Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chemistry ; 30(19): e202400017, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38284753

RESUMO

The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.


Assuntos
Aminoglicosídeos , Fosfatos Açúcares , Paládio , Escherichia coli , Antibacterianos/farmacologia , Catálise
2.
Chemistry ; 29(44): e202300318, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225663

RESUMO

A predictive model, shaped as a set of rules, is presented that predicts site-selectivity in the mono-oxidation of diols by palladium-neocuproine catalysis. For this, the factors that govern this site-selectivity within diols and between different diols have been studied both experimentally and with computation. It is shown that an electronegative substituent antiperiplanar to the C-H bond retards hydride abstraction, resulting in a lower reactivity. This explains the selective oxidation of axial hydroxy groups in vicinal cis-diols. Furthermore, DFT calculations and competition experiments show how the reaction rate of different diols is determined by their configuration and conformational freedom. The model has been validated by the oxidation of several complex natural products, including two steroids. From a synthesis perspective, the model predicts whether a natural product comprising multiple hydroxy groups is a suitable substrate for site-selective palladium-catalyzed oxidation.

3.
Org Biomol Chem ; 21(24): 5098-5103, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37278336

RESUMO

Thioglycosides or S-linked-glycosides are important glycomimetics. These thioglycosides are often prepared by glycosylating deoxythio sugar acceptors, which are synthesized via elaborate protecting group manipulations. We discovered that a carbonyl group, formed by site-selective oxidation of unprotected saccharides, can be converted into a thiol moiety. The transformation involves SN1-substitution of a chloro-azo intermediate, formed by oxidation of the corresponding trityl hydrazone, with a thiol. The prepared deoxythio sugars provide, in combination with the recently developed protecting group-free glycosylation of glycosyl fluorides, a protecting group-free synthesis of thioglycosides.

4.
Chembiochem ; 22(2): 434-440, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32864819

RESUMO

Mannose-6-phosphate (M6P) is recognized by the mannose-6-phosphate receptor and plays an important role in the transport of cargo to the endosomes, making it an attractive tool to improve endosomal trafficking of vaccines. We describe herein the assembly of peptide antigen conjugates carrying clusters of mannose-6-C-phosphonates (M6Po). The M6Po's are stable M6P mimics that are resistant to cleavage of the phosphate group by endogenous phosphatases. Two different strategies for the incorporation of the M6Po clusters in the conjugate have been developed: the first relies on a "post-assembly" click approach employing an M6Po bearing an alkyne functionality; the second hinges on an M6Po C-glycoside amino acid building block that can be used in solid-phase peptide synthesis. The generated conjugates were further equipped with a TLR7 ligand to stimulate dendritic cell (DC) maturation. While antigen presentation is hindered by the presence of the M6Po clusters, the incorporation of the M6Po clusters leads to increased activation of DCs, thus demonstrating their potential in improving vaccine adjuvanticity by intraendosomally active TLR ligands.


Assuntos
Antígenos/metabolismo , Manosefosfatos/metabolismo , Peptídeos/metabolismo , Receptores Toll-Like/metabolismo , Antígenos/química , Humanos , Ligantes , Manosefosfatos/química , Estrutura Molecular , Peptídeos/química , Receptores Toll-Like/química
5.
Bioconjug Chem ; 30(4): 1150-1161, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30865430

RESUMO

Simultaneous triggering of Toll-like receptors (TLRs) and NOD-like receptors (NLRs) has previously been shown to synergistically activate monocytes, dendritic cells, and macrophages. We applied these properties in a T-cell vaccine setting by conjugating the NOD2-ligand muramyl-dipeptide (MDP) and TLR2-ligand Pam3CSK4 to a synthetic peptide derived from a model antigen. Stimulation of human DCs with the MDP-peptide-Pam3CSK4 conjugate led to a strongly increased secretion of pro-inflammatory and Th1-type cytokines and chemokines. We further show that the conjugated ligands retain their ability to trigger their respective receptors, while even improving NOD2-triggering. Also, activation of murine DCs was enhanced by the dual triggering, ultimately leading to effective induction of vaccine-specific T cells expressing IFNγ, IL-2, and TNFα. Together, these data indicate that the dual MDP-SLP-Pam3CSK4 conjugate constitutes a chemically well-defined vaccine approach that holds promise for the use in the treatment of virus infections and cancer.


Assuntos
Células Dendríticas/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptídeos/imunologia , Receptor 2 Toll-Like/imunologia , Vacinas Conjugadas/imunologia , Animais , Citocinas/biossíntese , Células Dendríticas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Monócitos/imunologia , Vacinas Conjugadas/química
6.
Chemistry ; 22(1): 331-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26577340

RESUMO

The tetrapyridyl ligand bbpya (bbpya=N,N-bis(2,2'-bipyrid-6-yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2 ] (1) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai's domain model, and powder X-ray diffraction measurements, 1 is low-spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2 =418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong NH⋅⋅⋅S intermolecular H-bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1. DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N'-di(pyrid-2-yl)-2,2'-bipyridine-6,6'-diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2 ] (2). Periodic DFT calculations suggest that crystal-packing effects are significant for compound 2, in which they destabilize the HS state by about 1500 cm(-1) . The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.

7.
Org Lett ; 24(29): 5339-5344, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35848103

RESUMO

To circumvent protecting groups, the site-selective modification of unprotected glycosides is intensively studied. We show that site-selective oxidation, followed by treatment of the corresponding trityl hydrazone with tert-butyl hypochlorite and a H atom donor provides an effective way to introduce a chloride substituent in a variety of mono- and disaccharides. The stereoselectivity can be steered, and a new geminal dichlorination reaction is described as well. This strategy challenges existing methods that lead to overchlorination.


Assuntos
Glicosídeos , Halogenação , Álcoois , Dissacarídeos , Hidrazonas , Oxirredução
8.
NPJ Vaccines ; 7(1): 64, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739113

RESUMO

Adjuvants play a determinant role in cancer vaccination by optimally activating APCs and shaping the T cell response. Bacterial-derived lipid A is one of the most potent immune-stimulators known, and is recognized via Toll-like receptor 4 (TLR4). In this study, we explore the use of the synthetic, non-toxic, lipid A analog CRX-527 as an adjuvant for peptide cancer vaccines. This well-defined adjuvant was covalently conjugated to antigenic peptides as a strategy to improve vaccine efficacy. We show that coupling of this TLR4 agonist to peptide antigens improves vaccine uptake by dendritic cells (DCs), maturation of DCs and T cell activation in vitro, and stimulates DC migration and functional T cell priming in vivo. This translates into enhanced tumor protection upon prophylactic and therapeutic vaccination via intradermal injection against B16-OVA melanoma and HPV-related TC1 tumors. These results highlight the potential of CRX-527 as an adjuvant for molecularly defined cancer vaccines, and support the design of adjuvant-peptide conjugates as a strategy to optimize vaccine formulation.

9.
J Med Chem ; 63(20): 11691-11706, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960056

RESUMO

Self-adjuvanting vaccines, wherein an antigenic peptide is covalently bound to an immunostimulating agent, have been shown to be promising tools for immunotherapy. Synthetic Toll-like receptor (TLR) ligands are ideal adjuvants for covalent linking to peptides or proteins. We here introduce a conjugation-ready TLR4 ligand, CRX-527, a potent powerful lipid A analogue, in the generation of novel conjugate-vaccine modalities. Effective chemistry has been developed for the synthesis of the conjugation-ready ligand as well as the connection of it to the peptide antigen. Different linker systems and connection modes to a model peptide were explored, and in vitro evaluation of the conjugates showed them to be powerful immune-activating agents, significantly more effective than the separate components. Mounting the CRX-527 ligand at the N-terminus of the model peptide antigen delivered a vaccine modality that proved to be potent in activation of dendritic cells, in facilitating antigen presentation, and in initiating specific CD8+ T-cell-mediated killing of antigen-loaded target cells in vivo. Synthetic TLR4 ligands thus show great promise in potentiating the conjugate vaccine platform for application in cancer vaccination.


Assuntos
Vacinas Anticâncer/síntese química , Glucosamina/análogos & derivados , Lipídeo A/análogos & derivados , Compostos Organofosforados/química , Ovalbumina/química , Receptor 4 Toll-Like/imunologia , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Glucosamina/química , Glucosamina/imunologia , Imunoglobulina G/sangue , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Compostos Organofosforados/imunologia , Ovalbumina/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinas Conjugadas
10.
Org Lett ; 14(14): 3776-9, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22780913

RESUMO

Well-defined fragments of hyaluronic acid (HA) have been obtained through a fully automated solid-phase oligosaccharide synthesis. Disaccharide building blocks, featuring a disarmed glucuronic acid donor moiety and a di-tert-butylsilylidene-protected glucosamine part, were used in the rapid and efficient assembly of HA fragments up to the pentadecamer level, equipped with a conjugation-ready anomeric allyl function.


Assuntos
Dissacarídeos/química , Glucosamina/química , Ácido Hialurônico/química , Oligossacarídeos/síntese química , Estrutura Molecular , Oligossacarídeos/química , Técnicas de Síntese em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA