RESUMO
HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.
Assuntos
Antígenos de Histocompatibilidade Classe I , Malária Falciparum , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Sítios de Ligação , Variação Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/metabolismo , Peptídeos/imunologia , Plasmodium falciparum/imunologia , RNA Mensageiro/genética , Fator de Transcrição AP-2/metabolismoRESUMO
Achieving malaria elimination requires a better understanding of the transmissibility of human infections in different transmission settings. This study aimed to characterize the human infectious reservoir in a high endemicity setting in eastern Uganda, using gametocyte quantification and mosquito feeding assays. In asymptomatic infections, gametocyte densities were positively associated with the proportion of infected mosquitoes (ß = 1.60; 95% CI, 1.32-1.92; P < .0001). Combining transmissibility and abundance in the population, symptomatic and asymptomatic infections were estimated to contribute to 5.3% and 94.7% of the infectious reservoir, respectively. School-aged children (5-15 years old) contributed to 50.4% of transmission events and were important drivers of malaria transmission.
Assuntos
Anopheles , Linfoma de Burkitt , Malária Falciparum , Malária , Adolescente , Animais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Uganda/epidemiologiaRESUMO
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Assuntos
Plasmodium falciparum/imunologia , Receptores KIR/fisiologia , Adulto , Criança , Pré-Escolar , Genótipo , Antígenos HLA-C/genética , Humanos , Lactente , Ligantes , Malária Falciparum/etiologia , Malária Falciparum/imunologia , Parasitemia/etiologia , Parasitemia/imunologia , Plasmodium falciparum/isolamento & purificaçãoRESUMO
BACKGROUND: Intensive malaria control may have additional benefits beyond reducing the incidence of symptomatic malaria. We compared antibiotic treatment of children before and after the implementation of highly effective malaria control interventions in Tororo, a historically high transmission area of Uganda. METHODS: Two successive cohorts of children, aged 0.5 to 10 years, were followed from September 2011 to October 2019 in a dedicated study clinic. Universal distribution of long-lasting insecticidal nets was conducted in 2013 and 2017. Sustained indoor residual spraying of insecticide (IRS) was initiated in December 2014. Generalized linear mixed-effects models were used to compare the incidence of antimalarial and antibiotic treatments before and after vector control measures were implemented. RESULTS: Comparing the period prior to the implementation of IRS to the period after IRS had been sustained for 4-5 years, the adjusted incidence of malaria treatments decreased from 2.68 to 0.05 per person-year (incidence rate ratio [IRR] = 0.02, 95% CI 0.01-0.03, p < 0.001), and the adjusted incidence of antibiotic treatments decreased from 4.14 to 1.26 per person-year (IRR = 0.30, 95% CI 0.27-0.34, p < 0.001). The reduction in antibiotic usage was primarily associated with fewer episodes of symptomatic malaria and fewer episodes of fever with sub-microscopic parasitemia, both of which were frequently treated with antibiotics. CONCLUSIONS: In a historically high transmission setting, the implementation of highly effective vector control interventions was followed by a marked reduction in antibiotic treatment of children. This added benefit of malaria control could have important implications for antibiotic prescribing practices, efforts to curtail antimicrobial resistance, and health system costs.
Assuntos
Inseticidas , Malária , Antibacterianos , Criança , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Uganda/epidemiologiaRESUMO
BACKGROUND: Malaria is one of the most serious infectious diseases in the world. The malaria burden is greatly affected by human immunity, and immune responses vary between populations. Genetic diversity in KIR and HLA-C genes, which are important in immunity to infectious diseases, is likely to play a role in this heterogeneity. Several studies have shown that KIR and HLA-C genes influence the immune response to viral infections, but few studies have examined the role of KIR and HLA-C in malaria infection, and these have used low-resolution genotyping. The aim of this study was to determine whether genetic variation in KIR and their HLA-C ligands differ in Ugandan populations with historically varied malaria transmission intensity using more comprehensive genotyping approaches. METHODS: High throughput multiplex quantitative real-time PCR method was used to genotype KIR genetic variants and copy number variation and a high-throughput real-time PCR method was developed to genotype HLA-C1 and C2 allotypes for 1344 participants, aged 6 months to 10 years, enrolled from Ugandan populations with historically high (Tororo District), medium (Jinja District) and low (Kanungu District) malaria transmission intensity. RESULTS: The prevalence of KIR3DS1, KIR2DL5, KIR2DS5, and KIR2DS1 genes was significantly lower in populations from Kanungu compared to Tororo (7.6 vs 13.2%: p = 0.006, 57.2 vs 66.4%: p = 0.005, 33.2 vs 46.6%: p < 0.001, and 19.7 vs 26.7%: p = 0.014, respectively) or Jinja (7.6 vs 18.1%: p < 0.001, 57.2 vs 63.8%: p = 0.048, 33.2 vs 43.5%: p = 0.002, and 19.7 vs 30.4%: p < 0.001, respectively). The prevalence of homozygous HLA-C2 was significantly higher in populations from Kanungu (31.6%) compared to Jinja (21.4%), p = 0.043, with no significant difference between Kanungu and Tororo (26.7%), p = 0.296. CONCLUSIONS: The KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput, multiplex, real-time HLA-C genotyping PCR method developed will be useful in disease-association studies involving large cohorts.
Assuntos
Variações do Número de Cópias de DNA , Genótipo , Antígenos HLA-C/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Criança , Pré-Escolar , Antígenos HLA-C/metabolismo , Humanos , Lactente , Ligantes , Malária Falciparum/transmissão , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , UgandaRESUMO
BACKGROUND: Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS: All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS: As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS: Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.
Assuntos
Genótipo , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Plasmodium falciparum/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Humanos , Incidência , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Indoor residual spraying (IRS) is widely used as a vector control measure, although there are conflicting findings of its effectiveness in reducing malaria incidence. The objective of this study was to estimate the effect of multiple IRS rounds on malaria incidence and hemoglobin levels in a cohort of children in rural southeastern Uganda. METHODS: The study was based upon a dynamic cohort of children aged 0.5-10 years enrolled from August 2011 to June 2017 in Nagongera Subcounty. Confirmed malaria infections and hemoglobin levels were recorded over time for each participant. After each of 4 rounds of IRS, malaria incidence, hemoglobin levels, and parasite density were evaluated and compared with pre-IRS levels. Analyses were carried out at the participant level while accounting for repeated measures and clustering by household. RESULTS: Incidence rate ratios comparing post-IRS to pre-IRS incidence rates for age groups 0-3, 3-5, and 5-11 were 0.108 (95% confidence interval [CI], .078-.149), 0.173 (95% CI, .136-.222), and 0.226 (95% CI, .187-.274), respectively. The mean hemoglobin levels significantly increased from 11.01 (pre-IRS) to 12.18 g/dL (post-IRS). CONCLUSIONS: Our study supports the policy recommendation of IRS usage in a stable and perennial transmission area to rapidly reduce malaria transmission.
Assuntos
Hemoglobinas/análise , Inseticidas/administração & dosagem , Malária/epidemiologia , Organofosfonatos/administração & dosagem , Fenilcarbamatos/administração & dosagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Incidência , Lactente , Malária/prevenção & controle , Malária/transmissão , Masculino , Controle de Mosquitos/métodos , Parasitemia/epidemiologia , Uganda/epidemiologiaRESUMO
BACKGROUND: The burden of malaria in Uganda remains high, but has become increasingly heterogenous following intensified malaria control. Travel within Uganda is recognized as a risk factor for malaria, but behaviours associated with travel are not well-understood. To address this knowledge gap, malaria-relevant behaviours of cohort participants were assessed during travel and at home in Uganda. METHODS: Residents from 80 randomly selected households in Nagongera sub-county, Tororo district were enrolled into a cohort to study malaria in rural Uganda. All participants were given long-lasting insecticidal nets (LLINs) at enrolment and were evaluated every 4 weeks at the study clinic. Participants were asked if they had travelled overnight from their home, and if so, a questionnaire was administered to capture information on travel details and behaviours. Behaviour while travelling was assessed within 4 weeks following travel during the study clinic visit. Behaviour while at home was assessed using a similar questionnaire during two-weekly home visits. Behaviours while travelling vs at home were compared using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Analysis of factors associated with LLIN adherence, such as destination and duration of travel, time to bed during travel, gender and age at time of travel, were assessed using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. RESULTS: Between October 2017 and October 2019, 527 participants were enrolled and assessed for travel. Of these, 123 (23.2%) reported taking 211 overnight trips; 149 (70.6%) trips were within Tororo. Participants were less likely to use LLINs when travelling than when at home (41.0% vs. 56.2%, relative risk [RR] 0.73, 95% CI 0.60-0.89, p = 0.002); this difference was noted for women (38.8% vs 59.2%, RR 0.66, 95% CI 0.52-0.83, p = 0.001) but not men (48.3% vs 46.6%, RR 0.96, 95% CI 0.67-1.40, p = 0.85). In an adjusted analysis, factors associated with LLIN use when travelling included destination (travelling to districts not receiving indoor residual spraying [IRS] 65.8% vs Tororo district 32.2%, RR 1.80, 95% CI 1.31-2.46, p < 0.001) and duration of travel (> 7 nights 60.3% vs one night 24.4%, RR 1.97, 95% CI 1.07-3.64, p = 0.03). CONCLUSIONS: Travellers, particularly women, were less likely to use LLINs when travelling than when at home. LLIN adherence was higher among those who travelled to non-IRS districts and for more than 1 week, suggesting that perceived malaria risk influences LLIN use. Strategies are needed to raise awareness of the importance of using LLINs while travelling.
Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Controle de Mosquitos/estatística & dados numéricos , Viagem/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Uganda , Adulto JovemRESUMO
BACKGROUND: Over the last two decades, there has been remarkable progress in malaria control in sub-Saharan Africa, due mainly to the massive deployment of long-lasting insecticidal nets and indoor residual spraying. Despite these gains, it is clear that in many situations, additional interventions are needed to further reduce malaria transmission. The World Health Organization (WHO) has promoted the Integrated Vector Management (IVM) approach through its Global Vector Control Response 2017-2030. However, prior roll-out of larval source management (LSM) as part of IVM, knowledge on ecology of larval aquatic habitats is required. METHODS: Aquatic habitats colonized by immature Anopheles and culicines vectors were characterized at three sites of low, medium and high malaria transmission in Uganda from October 2011 to June 2015. Larval surveys were conducted along transects in each site and aquatic habitats described according to type and size. Immature Anopheles, culicines and pupae from the described habitats were sampled using standard dipping methods to determine larval and pupae densities. Larvae were identified as anopheline or culicine, and counted. Pupae were not identified further. Binary logistic regression analysis was used to identify factors associated with the presence of immature Anopheles and culicines in each site. RESULTS: A total of 1205 larval aquatic habitats were surveyed and yielded a total of 17,028 anopheline larvae, 26,958 culicine larvae and 1189 pupae. Peaks in larval abundance occurred in all sites in March-May and August-October coinciding with the rainy seasons. Anopheles larvae were found in 52.4% (n = 251) of aquatic habitats in Tororo, a site of high transmission, 41.9% (n = 536) of habitats in Kanungu, a site with moderate malaria transmission, and 15.8% (n = 418) in Jinja, a site with low malaria transmission. The odds of finding larvae was highest in rice fields compared to pools in both Tororo (odds ratio, OR = 4.21, 95% CI 1.22-14.56, p = 0.02) and Kanungu (OR = 2.14, 95% CI 1.12-4.07, p = 0.02), while in Jinja the odd were highest in containers (OR = 4.55, 95% CI = 1.09-19.14, p = 0.03). In Kanungu, larvae were less likely to be found in containers compared to pools (OR = 0.26, 95% CI 0.09-0.66, p = 0.008) and river fringe (OR = 0.19, 95% CI 0.07-0.52, p = 0.001). Medium sized habitats were associated with high odds of finding larvae compared to small habitats (OR = 3.59, 95% CI 1.18-14.19, p = 0.039). CONCLUSIONS: These findings show that immature Anopheles and culicines were common in areas of high and moderate transmission but were rare in areas of low transmission. Although immature Anopheles and culicines were found in all types of water bodies, they were most common in rice fields and less common in open drains and in river fringes. Methods are needed to reduce the aquatic stages of anopheline mosquitoes in human-made habitats, particularly rice fields.
Assuntos
Distribuição Animal , Culicidae/fisiologia , Ecossistema , Mosquitos Vetores/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/fisiologia , Culicidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , UgandaRESUMO
BACKGROUND: Multiple red blood cell (RBC) variants appear to offer protection against the most severe forms of Plasmodium falciparum malaria. Associations between these variants and uncomplicated malaria are less clear. METHODS: Data from a longitudinal cohort study conducted in 3 sub-counties in Uganda was used to quantify associations between three red blood cell variants Hb [AA, AS, S (rs334)], alpha thalassaemia 3.7 kb deletion, and glucose-6-phosphate dehydrogenase deficiency A-(G6PD 202A genotype) and malaria incidence, parasite prevalence, parasite density (a measure of anti-parasite immunity) and body temperature adjusted for parasite density (a measure of anti-disease immunity). All analyses were adjusted for age, average household entomological inoculation rate, and study site. Results for all variants were compared to those for wild type genotypes. RESULTS: In children, HbAS was associated, compared to wild type, with a lower incidence of malaria (IRR = 0.78, 95% CI 0.66-0.92, p = 0.003), lower parasite density upon infection (PR = 0.66, 95% CI 0.51-0.85, p = 0.001), and lower body temperature for any given parasite density (- 0.13 â, 95% CI - 0.21, - 0.05, p = 0.002). In children, HbSS was associated with a lower incidence of malaria (IRR = 0.17, 95% CI 0.04-0.71, p = 0.02) and lower parasite density upon infection (PR = 0.31, 95% CI 0.18-0.54, p < 0.001). α-/αα thalassaemia, was associated with higher parasite prevalence in both children and adults (RR = 1.23, 95% CI 1.06-1.43, p = 0.008 and RR = 1.52, 95% CI 1.04-2.23, p = 0.03, respectively). G6PD deficiency was associated with lower body temperature for any given parasite density only among male hemizygote children (- 0.19 â, 95% CI - 0.31, - 0.06, p = 0.003). CONCLUSION: RBC variants were associated with non-severe malaria outcomes. Elucidation of the mechanisms by which they confer protection will improve understanding of genetic protection against malaria.
Assuntos
Eritrócitos/citologia , Malária/sangue , Adulto , Fatores Etários , Distribuição Binomial , Cuidadores , Criança , Pré-Escolar , Estudos de Coortes , Eritrócitos/química , Eritrócitos/classificação , Feminino , Humanos , Incidência , Lactente , Estudos Longitudinais , Malária/epidemiologia , Malária/genética , Malária/parasitologia , Masculino , Parasitemia/sangue , Parasitemia/epidemiologia , Parasitemia/genética , Parasitemia/parasitologia , Prevalência , Estudos Prospectivos , Fatores Sexuais , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Indoor residual spraying of insecticide (IRS) has been associated with reductions in the incidence of malaria, but its impact on malaria parasitemia is unclear. METHODS: We followed 469 participants from August 2011 to May 2016 in Tororo, Uganda, a historically high malaria transmission setting. Three rounds of IRS with bendiocarb were implemented from December 2014 to December 2015. Symptomatic malaria episodes were identified by passive surveillance. Parasitemia was identified by active surveillance every 1-3 months using microscopy and Plasmodium falciparum-specific loop-mediated isothermal amplification. RESULTS: IRS was associated with a significant decline in the incidence of symptomatic malaria irrespective of age (episodes per person per year declined from 3.98 to 0.13 in children aged <5 years, 2.30 to 0.15 in children aged 5-10 years, and 0.41 to 0 in adults; P < .001 for all). IRS significantly reduced the prevalence of parasitemia, but the prevalence remained high (pre-IRS to post-third round: 58.5% to 11.3% in children aged <5 years, 73.3% to 23.7% in children aged 5-10 years, and 52.2% to 15.4% in adults; P < .001 for all). CONCLUSIONS: Although IRS was associated with significant reductions in the incidence of malaria and prevalence of parasitemia, a proportion of the population remained parasitemic, providing a potential reservoir for malaria transmission.
Assuntos
Inseticidas , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Controle de Mosquitos , Parasitemia/epidemiologia , Fenilcarbamatos , Adolescente , Adulto , Criança , Pré-Escolar , Reservatórios de Doenças , Humanos , Incidência , Lactente , Malária Falciparum/prevenção & controle , Mosquitos Vetores , Prevalência , Uganda/epidemiologia , Adulto JovemRESUMO
Background: Human movement can undermine malaria control efforts. However, understanding of the association between travel and malaria infection in Africa is limited. We evaluated the association between recent overnight travel and malaria incidence in Uganda. Methods: All children aged 0.5-10 years and 1 adult living in 266 randomly selected households within 3 different regions of Uganda were followed up prospectively. Information on overnight travel was collected in 2015-2016. Malaria, defined as fever with parasites detected by microscopy, was measured using passive surveillance. Results: At least 1 overnight trip was reported by 64 of 275 (23.3%) participants in Walukuba, 37 of 317 (11.7%) in Nagongera, and 19 of 314 (6.1%) in Kihihi. Among individuals who traveled, the incidence of malaria was higher in the first 60 days after traveling, compared with periods without recent travel at all 3 sites (overall, 1.15 vs 0.33 episodes per person-year; incidence rate ratio, 3.53; 95% confidence interval, 1.85-6.73; P < .001). Risk factors for malaria within 60 days after overnight travel included young age (19.5% in children vs 4.9% in adults; odds ratio, 5.29; 95% confidence interval, 1.34-21.0; P = .02) and not using an insecticide-treated net during travel (18.0% for no use vs 4.1% for any use; 5.10; 1.07-24.5; P = .04). Conclusions: Recent overnight travel was associated with a higher incidence of malaria. Individuals who travel may represent a high-risk group that could be targeted for malaria control interventions, particularly use of insecticide-treated nets.
Assuntos
Malária/epidemiologia , Viagem , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Uganda/epidemiologiaRESUMO
Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.
Assuntos
Antígenos de Protozoários/sangue , Infecções Assintomáticas , Proteína C-Reativa/análise , Imunoensaio/métodos , Malária/sangue , Malária/diagnóstico , Adulto , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Doenças Endêmicas , Humanos , Lactente , L-Lactato Desidrogenase/sangue , Malária/epidemiologia , Mianmar/epidemiologia , Plasmodium/imunologia , Proteínas de Protozoários/sangue , Sensibilidade e Especificidade , Uganda/epidemiologiaRESUMO
BACKGROUND: Long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are widely recommended for the prevention of malaria in endemic regions. Data from human landing catches provide information on the impact of vector control on vector populations. Here, malaria transmission indoors and outdoors, before and after mass deployment of LLINs and IRS in Uganda was compared. METHODS: The study took place in Tororo district, a historically high transmission area where universal LLIN distribution was conducted in November 2013 and May 2017 and 6 rounds of IRS implemented from December 2014 to July 2018. Human landing catches were performed in 8 houses monthly from October 2011 to September 2012 (pre-intervention period) and every 4 weeks from November 2017 to October 2018 (post-intervention period). Mosquitoes were collected outdoors from 18:00 to 22:00 h and indoors from 18:00 to 06:00 h. Female Anopheles were tested for the presence of Plasmodium falciparum sporozoites and species identification performed using gross dissection and polymerase chain reaction (PCR). RESULTS: The interventions were associated with a decline in human biting rate from 19.6 to 2.3 female Anopheles mosquitoes per house per night (p < 0.001) and annual entomological inoculation rate from 129 to 0 infective bites per person per year (p < 0.001). The proportion of mosquitoes collected outdoors increased from 11.6 to 49.4% (p < 0.001). Prior to the interventions the predominant species was Anopheles gambiae sensu stricto (s.s.), which comprised an estimated 76.7% of mosquitoes. Following the interventions, the predominant species was Anopheles arabiensis, which comprised 99.5% of mosquitoes, with almost complete elimination of An. gambiae s.s. (0.5%). CONCLUSIONS: Mass distribution of LLINs and 6 rounds of IRS dramatically decreased vector density and sporozoite rate resulting in a marked reduction in malaria transmission intensity in a historically high transmission site in Uganda. These changes were accompanied by a shift in vector species from An. gambiae s.s. to An. arabiensis and a relative increase in outdoor biting.
Assuntos
Anopheles/fisiologia , Biodiversidade , Mordeduras e Picadas de Insetos/etiologia , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Animais , Feminino , UgandaRESUMO
BACKGROUND: The human infectious reservoir for malaria consists of individuals capable of infecting mosquitoes. Oocyst prevalence and density are typical indicators of human infectivity to mosquitoes. However, identification of oocysts is challenging, particularly in areas of low malaria transmission intensity where few individuals may infect mosquitoes, and infected mosquitoes tend to have few oocysts. Here, features that differentiate oocysts from other oocyst-like in mosquito midguts are explained and illustrated. In addition, the establishment and maintenance of infrastructure to perform malaria transmission experiments is described. This work may support other initiatives to set up membrane feeding infrastructure and guide oocyst detection in low transmission settings. METHODS: In 2014, an insectary was developed and equipped in Tororo district, Uganda. A colony of Anopheles gambiae s.s. mosquitoes (Kisumu strain) was initiated to support infectivity experiments from participants enrolled in a large cohort study. Venous blood drawn from participants who were naturally infected with malaria parasites was used for membrane feeding assays, using 60-80 mosquitoes per experiment. Approximately 9-10 days after feeding, mosquitoes were dissected, and midguts were stained in mercurochrome and examined by light microscopy for Plasmodium falciparum oocysts and similar structures. In supportive experiments, different staining procedures were compared using in vitro cultured parasites. RESULTS: A stable colony of the Kisumu strain of An. gambiae s.s. was achieved, producing 5000-10,000 adult mosquitoes on a weekly basis. Challenges due to temperature fluctuations, mosquito pathogens and pests were successfully overcome. Oocysts were characterized by: presence of malaria pigment, clearly defined edge, round shape within the mosquito midgut or on the peripheral tissue and always attached to the epithelium. The main distinguishing feature between artifacts and mature oocysts was the presence of defined pigment within the oocysts. CONCLUSIONS: Oocysts may be mistaken for other structures in mosquito midguts. Distinguishing real oocysts from oocyst-like structures may be challenging for inexperienced microscopists due to overlapping features. The characteristics and guidelines outlined here support identification of oocysts and reliable detection at low oocyst densities. Practical advice on sustaining a healthy mosquito colony for feeding experiments is provided. Following the reported optimization, the established infrastructure in Tororo allows assessments of infectivity of naturally infected parasite carriers.
Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Oocistos/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Animais , Feminino , Humanos , Oocistos/citologia , Oocistos/crescimento & desenvolvimento , Plasmodium falciparum/citologia , Plasmodium falciparum/crescimento & desenvolvimento , UgandaRESUMO
BACKGROUND: Submicroscopic malaria parasitaemia is common in both high- and low-endemicity settings, but its clinical consequences are unclear. METHODS: A cohort of 364 children (0.5-10 years of age) and 106 adults was followed from 2011 to 2016 in Tororo District, Uganda using passive surveillance for malaria episodes and active surveillance for parasitaemia. Participants presented every 90 days for routine visits (n = 9075); a subset was followed every 30 days. Participants who presented with fever and a positive blood smear were treated for malaria. At all routine visits microscopy was performed and samples from subjects with a negative blood smear underwent loop-mediated isothermal amplification for detection of plasmodial DNA. RESULTS: Submicroscopic parasitaemia was common; the proportion of visits with submicroscopic parasitemia was 25.8% in children and 39.2% in adults. For children 0.5-10 years of age, but not adults, having microscopic and submicroscopic parasitaemia at routine visits was significantly associated with both fever (adjusted risk ratios [95% CI], 2.64 [2.16-3.22], 1.67 [1.37-2.03]) and non-febrile illness (aRR [CI], 1.52 [1.30-1.78], 1.26 [1.09-1.47]), compared to not having parasitaemia. After stratifying by age, significant associations were seen between submicroscopic parasitaemia and fever in children aged 2-< 5 and 5-10 years (aRR [CI], 1.42 [1.03-1.98], 2.01 [1.49-2.71]), and submicroscopic parasitaemia and non-febrile illness in children aged 5-10 years (aRR [CI], 1.44 [1.17-1.78]). These associations were maintained after excluding individuals with a malaria episode within the preceding 14 or following 7 days, and after adjusting for household wealth. CONCLUSIONS: Submicroscopic malaria infections were associated with fever and non-febrile illness in Ugandan children. These findings support malaria control strategies that target low-density infections.
Assuntos
Febre/epidemiologia , Malária/epidemiologia , Parasitemia/epidemiologia , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Febre/parasitologia , Febre/prevenção & controle , Humanos , Lactente , Malária/parasitologia , Malária/prevenção & controle , Microscopia , Pessoa de Meia-Idade , Técnicas de Amplificação de Ácido Nucleico , Parasitemia/parasitologia , Parasitemia/prevenção & controle , Prevalência , Uganda/epidemiologia , Adulto JovemRESUMO
BACKGROUND: The detection of submicroscopic infections in low prevalence settings has become an increasingly important challenge for malaria elimination strategies. The current field rapid diagnostic tests (RDTs) for Plasmodium falciparum malaria are inadequate to detect low-density infections. Therefore, there is a need to develop more sensitive field diagnostic tools. In parallel, a highly sensitive laboratory reference assay will be essential to evaluate new diagnostic tools. Recently, the highly sensitive Alere™ Malaria Ag P.f ELISA (HS ELISA) was developed to detect P. falciparum histidine-rich protein 2 (HRP2) in clinical whole blood specimens. In this study, the analytical and clinical performance of the HS ELISA was determined using recombinant P. falciparum HRP2, P. falciparum native culture parasites, and archived highly pedigreed clinical whole blood specimens from Karen village, Myanmar and Nagongera, Uganda. RESULTS: The HS ELISA has an analytical sensitivity of less than 25 pg/mL and shows strong specificity for P. falciparum HRP2 when tested against P. falciparum native culture strains with pfhrp2 and pfhrp3 gene deletions. Additionally, the Z'-factor statistic of 0.862 indicates the HS ELISA as an excellent, reproducible assay, and the coefficients of variation for inter- and intra-plate testing, 11.76% and 2.51%, were acceptable. Against clinical whole blood specimens with concordant microscopic and PCR results, the HS ELISA showed 100% (95% CI 96.4-100) diagnostic sensitivity and 97.9% (95% CI 94.8-99.4) diagnostic specificity. For P. falciparum positive specimens with HRP2 concentrations below 400 pg/mL, the sensitivity and specificity were 100% (95% CI 88.4-100) and 88.9% (95% CI 70.8-97.6), respectively. The overall sensitivity and specificity for all 352 samples were 100% (CI 95% 96-100%) and 97.3% (CI 95% 94-99%). CONCLUSIONS: The HS ELISA is a robust and reproducible assay. The findings suggest that the HS ELISA may be a useful tool as an affordable reference assay for new ultra-sensitive HRP2-based RDTs.
Assuntos
Antígenos de Protozoários/sangue , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/sangue , Humanos , Mianmar , Sensibilidade e Especificidade , UgandaRESUMO
FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.
Assuntos
Malária Falciparum/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Linfócitos T Reguladores/citologia , Criança , Pré-Escolar , Fatores de Transcrição Forkhead/imunologia , Humanos , Lactente , Malária/parasitologia , Linfócitos T Reguladores/imunologia , Uganda/epidemiologiaRESUMO
BACKGROUND: Young children are at greatest risk for malaria-associated morbidity and mortality. The immune response of young children differs in fundamental ways from that of adults, and these differences likely contribute to the increased susceptibility of children to severe malaria and to their delayed development of immunity. Elevated levels of pro-inflammatory cytokines and chemokines in the peripheral blood during acute infection contribute to the control of parasitaemia, but are also responsible for much of the immunopathology seen during symptomatic disease. Clinical immunity to malaria may depend upon the ability to regulate these pro-inflammatory responses, possibly through mechanisms of immunologic tolerance. In order to explore the effect of age on the immune response to malaria and the development of clinical immunity, cytokines and chemokines were measured in the plasma of children at day 0 of an acute malaria episode and during convalescence. RESULTS: Younger children presenting with acute malaria exhibited much higher levels of TNF, IL2, and IL6, as well as increased Th1 associated chemokines IP10, MIG, and MCP1, compared to older children with acute malaria. Additionally, the regulatory cytokines IL10 and TNFRI were dramatically elevated in younger children compared to older children during acute infection, indicating that regulatory as well as pro-inflammatory cytokine responses are dampened in later childhood. CONCLUSIONS: Together these data suggest that there is a profound blunting of the cytokine and chemokine response to malaria among older children residing in endemic settings, which may be due to repeated malaria exposure, intrinsic age-based differences in the immune response, or both.
Assuntos
Quimiocinas/imunologia , Citocinas/imunologia , Inflamação , Malária Falciparum/imunologia , Malária/imunologia , Fatores Etários , Quimiocinas/sangue , Criança , Pré-Escolar , Citocinas/biossíntese , Citocinas/sangue , Feminino , Humanos , Tolerância Imunológica , Lactente , Malária/sangue , Malária Falciparum/epidemiologia , Masculino , Parasitemia , Plasmodium falciparum/imunologiaRESUMO
BACKGROUND: Plasmodium gametocytes are sexual stages transmitted to female Anopheles mosquitoes. While Plasmodium parasites can be differentiated microscopically on Giemsa-stained blood smears, molecular methods are increasingly used because of their increased sensitivity. Molecular detection of gametocytes requires methods that discriminate between asexual and sexual stage parasites. Commonly tested gametocyte-specific mRNAs are pfs25 and pfs230 detected by reverse transcription polymerase chain reaction (RT-PCR). However, detection of these unspliced mRNA targets requires preceding DNase treatment of nucleic acids to eliminate co-purified genomic DNA. If gametocyte-specific, spliced mRNAs could be identified, DNase treatment could be eliminated and one-step multiplexed molecular methods utilized. RESULTS: Expression data was used to identify highly-expressed mRNAs in mature gametocytes that were also low in antisense RNA expression in non-gametocyte stages. After testing numerous candidate mRNAs, the spliced female Pf3D7_0630000 mRNA was selected as a Plasmodium falciparum gametocyte-specific biomarker compatible with Plasmodium 18S rRNA RT-PCR. This mRNA was only detected in samples containing mature gametocytes and was absent in those containing only asexual stage parasites or uninfected human blood. PF3D7_0630000 RT-PCR detected gametocytes across a wide range of parasite densities in both spiked and clinical samples and agreed with pfs25 RT-PCR, the gold standard for RT-PCR-based gametocyte detection. PF3D7_0630000 multiplexed with Plasmodium 18S rRNA RT-PCR was more sensitive than other spliced mRNA targets for one-step RT-PCR gametocyte detection. CONCLUSIONS: Because the spliced target does not require DNase treatment, the PF3D7_0630000 assay can be multiplexed with Plasmodium 18S rRNA for direct one-step detection of gametocytes from whole human blood.