Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 136(6): 1085-97, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303851

RESUMO

The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7. Reconstituting MAPK signaling in vitro, we find that Fus3 is an intrinsically poor substrate for Ste7, although the related filamentation MAPK, Kss1, is an excellent substrate. We identify and structurally characterize a domain in Ste5 that catalytically unlocks Fus3 for phosphorylation by Ste7. This domain selectively increases the k(cat) of Ste7-->Fus3 phosphorylation but has no effect on Ste7-->Kss1 phosphorylation. The dual requirement for both Ste7 and this Ste5 domain in Fus3 activation explains why Fus3 is selectively activated by the mating pathway and not by other pathways that also utilize Ste7.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica , Ativação Enzimática , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Fosforilação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
2.
Adv Exp Med Biol ; 3234: 59-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507200

RESUMO

There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.


Assuntos
Aminoácidos , Motivos de Aminoácidos
3.
Trends Biochem Sci ; 44(4): 300-311, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611608

RESUMO

Since publication of the crystal structure of protein kinase (PK)A three decades ago, a structural portrait of the conserved kinase core has been drawn. The next challenge is to elucidate structures of full-length kinases and to address the intrinsically disordered regions (IDRs) that typically flank the core as well as the small linear motifs (SLiMs) that are embedded within the IDRs. It is increasingly apparent that unstructured regions integrate the kinase catalytic chassis into multienzyme-based regulatory networks. The extracellular signal-regulated kinase-ribosomal S6 PK-phosphoinositide-dependent kinase (ERK-RSK-PDK) complex is an excellent example to demonstrate how IDRs and SLiMs govern communication between four different kinase catalytic cores to mediate activation and how in molecular terms these promote the formation of kinase heterodimers in a context dependent fashion.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Domínios Proteicos
4.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834301

RESUMO

Protein kinases are key regulators of cell signaling and have been important therapeutic targets for three decades. ATP-competitive drugs directly inhibit the activity of kinases but these enzymes work as part of complex protein networks in which protein-protein interactions (often referred to as kinase docking) may govern a more complex activation pattern. Kinase docking is indispensable for many signaling disease-relevant Ser/Thr kinases and it is mediated by a dedicated surface groove on the kinase domain which is distinct from the substrate-binding pocket. Thus, interfering with kinase docking provides an alternative strategy to control kinases. We describe activity sensors developed for p90 ribosomal S6 kinase (RSK) and mitogen-activated protein kinases (MAPKs: ERK, p38, and JNK) whose substrate phosphorylation is known to depend on kinase-docking-groove-mediated protein-protein binding. The in vitro assays were based on fragment complementation of the NanoBit luciferase, which is facilitated upon substrate motif phosphorylation. The new phosphorylation-assisted luciferase complementation (PhALC) sensors are highly selective and the PhALC assay is a useful tool for the quantitative analysis of kinase activity or kinase docking, and even for high-throughput screening of academic compound collections.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases , Fosforilação , Ligação Proteica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
5.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328741

RESUMO

A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein degradation assay geared towards the identification of FBXW7-binding degron motifs phosphorylated by mitogen-activated protein kinases (MAPKs). Most of the known FBXW7 targets are localized in the nucleus and function as transcription factors. Here, in addition to more transcription affecting factors (ETV5, KLF4, SP5, JAZF1, and ZMIZ1 CAMTA2), we identified phosphodegrons located in proteins involved in chromatin regulation (ARID4B, KMT2E, KMT2D, and KAT6B) or cytoskeletal regulation (MAP2, Myozenin-2, SMTL2, and AKAP11), and some other proteins with miscellaneous functions (EIF4G3, CDT1, and CCAR2). We show that the protein level of full-length ARID4B, ETV5, JAZF1, and ZMIZ1 are affected by different MAPKs since their FBXW7-mediated degradation was diminished in the presence of MAPK-specific inhibitors. Our results suggest that MAPK and FBXW7 partnership plays an important cellular role by directly affecting the level of key regulatory proteins. The data also suggest that the p38α-controlled phosphodegron in JAZF1 may be responsible for the pathological regulation of the cancer-related JAZF1-SUZ12 fusion construct implicated in endometrial stromal sarcoma.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Ubiquitina-Proteína Ligases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360869

RESUMO

The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called "tandem SH3") and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Domínios de Homologia de src
7.
Biochemistry ; 59(17): 1688-1700, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250593

RESUMO

Ndr/Lats kinases bind Mob coactivator proteins to form complexes that are essential and evolutionarily conserved components of "Hippo" signaling pathways, which control cell proliferation and morphogenesis in eukaryotes. All Ndr/Lats kinases have a characteristic N-terminal regulatory (NTR) region that binds a specific Mob cofactor: Lats kinases associate with Mob1 proteins, and Ndr kinases associate with Mob2 proteins. To better understand the significance of the association of Mob protein with Ndr/Lats kinases and selective binding of Ndr and Lats to distinct Mob cofactors, we determined crystal structures of Saccharomyces cerevisiae Cbk1NTR-Mob2 and Dbf2NTR-Mob1 and experimentally assessed determinants of Mob cofactor binding and specificity. This allowed a significant improvement in the previously determined structure of Cbk1 kinase bound to Mob2, presently the only crystallographic model of a full length Ndr/Lats kinase complexed with a Mob cofactor. Our analysis indicates that the Ndr/LatsNTR-Mob interface provides a distinctive kinase regulation mechanism, in which the Mob cofactor organizes the Ndr/Lats NTR to interact with the AGC kinase C-terminal hydrophobic motif (HM), which is involved in allosteric regulation. The Mob-organized NTR appears to mediate association of the HM with an allosteric site on the N-terminal kinase lobe. We also found that Cbk1 and Dbf2 associated specifically with Mob2 and Mob1, respectively. Alteration of residues in the Cbk1 NTR allows association of the noncognate Mob cofactor, indicating that cofactor specificity is restricted by discrete sites rather than being broadly distributed. Overall, our analysis provides a new picture of the functional role of Mob association and indicates that the Ndr/LatsNTR-Mob interface is largely a common structural platform that mediates kinase-cofactor binding.


Assuntos
Sequência Conservada , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
8.
Cell Microbiol ; 21(3): e12973, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30412643

RESUMO

Constitutive c-Jun N-terminal kinase (JNK) activity characterizes bovine T and B cells infected with Theileria parva, and B cells and macrophages infected with Theileria annulata. Here, we show that T. annulata infection of macrophages manipulates JNK activation by recruiting JNK2 and not JNK1 to the parasite surface, whereas JNK1 is found predominantly in the host cell nucleus. At the parasite's surface, JNK2 forms a complex with p104, a GPI-(GlycosylPhosphatidylInositol)-anchor T. annulata plasma membrane protein. Sequestration of JNK2 depended on Protein Kinase-A (PKA)-mediated phosphorylation of a JNK-binding motif common to T. parva and a cell penetrating peptide harbouring the conserved p104 JNK-binding motif competitively ablated binding, whereupon liberated JNK2 became ubiquitinated and degraded. Cytosolic sequestration of JNK2 suppressed small mitochondrial ARF-mediated autophagy, whereas it sustained nuclear JNK1 levels, c-Jun phosphorylation, and matrigel traversal. Therefore, T. annulata sequestration of JNK2 contributes to both survival and dissemination of Theileria-transformed macrophages.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Macrófagos/parasitologia , Proteínas de Membrana/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteínas de Protozoários/metabolismo , Theileria annulata/crescimento & desenvolvimento , Animais , Macrófagos/imunologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Teóricos , Ligação Proteica , Theileria annulata/metabolismo , Theileriose/parasitologia , Theileriose/patologia
9.
Nucleic Acids Res ; 46(D1): D428-D434, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136216

RESUMO

Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.


Assuntos
Bases de Dados de Proteínas , Células Eucarióticas/metabolismo , Interações Hospedeiro-Patógeno/genética , Anotação de Sequência Molecular , Proteínas/química , Software , Motivos de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Ciclo Celular/genética , Células Eucarióticas/citologia , Células Eucarióticas/microbiologia , Células Eucarióticas/virologia , Fungos/genética , Fungos/metabolismo , Humanos , Internet , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Vírus/genética , Vírus/metabolismo
10.
Genes Dev ; 26(9): 958-73, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22549958

RESUMO

Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11(-/-), but not the asynaptic and DSB repair-defective Dmc1(-/-) oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Quebras de DNA de Cadeia Dupla , Animais , Proteínas de Ciclo Celular/genética , Feminino , Infertilidade Masculina/genética , Masculino , Meiose/genética , Camundongos , Camundongos Mutantes , Proteínas Nucleares/genética , Oócitos/metabolismo , Proteínas de Ligação a Fosfato , Complexo Sinaptonêmico/genética
11.
EMBO J ; 33(16): 1784-801, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24975362

RESUMO

Mitogen-activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular-signal-regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three-tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain-mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63-linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5-ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3-ERK5-dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5-MAPK module and human muscle cell differentiation.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , MAP Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Ubiquitina/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA , Ativação Enzimática , Humanos , Proteínas Inibidoras de Apoptose/genética , MAP Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinases/genética , Fatores de Transcrição MEF2/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
12.
PLoS Biol ; 13(5): e1002146, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25966461

RESUMO

Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. "Hippo" pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with "Mob" coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1-Mob2, to our knowledge the first of an NDR/LATS kinase-Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1's regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/química , Sequência Conservada , Peptídeos e Proteínas de Sinalização Intracelular/química , Fosforilação , Proteínas Serina-Treonina Quinases/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
13.
Proc Natl Acad Sci U S A ; 112(9): 2711-6, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730857

RESUMO

Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/química , Complexos Multienzimáticos/química , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Domínio Catalítico , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
14.
J Biol Chem ; 291(1): 11-27, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527685

RESUMO

Mitogen-activated protein kinases (MAPK) promote MAPK-activated protein kinase activation. In the MAPK pathway responsible for cell growth, ERK2 initiates the first phosphorylation event on RSK1, which is inhibited by Ca(2+)-binding S100 proteins in malignant melanomas. Here, we present a detailed in vitro biochemical and structural characterization of the S100B-RSK1 interaction. The Ca(2+)-dependent binding of S100B to the calcium/calmodulin-dependent protein kinase (CaMK)-type domain of RSK1 is reminiscent of the better known binding of calmodulin to CaMKII. Although S100B-RSK1 and the calmodulin-CAMKII system are clearly distinct functionally, they demonstrate how unrelated intracellular Ca(2+)-binding proteins could influence the activity of the CaMK domain-containing protein kinases. Our crystallographic, small angle x-ray scattering, and NMR analysis revealed that S100B forms a "fuzzy" complex with RSK1 peptide ligands. Based on fast-kinetics experiments, we conclude that the binding involves both conformation selection and induced fit steps. Knowledge of the structural basis of this interaction could facilitate therapeutic targeting of melanomas.


Assuntos
Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Polarização de Fluorescência , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/química , Soluções , Relação Estrutura-Atividade , Triptofano/metabolismo
15.
Development ; 140(16): 3486-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900546

RESUMO

The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis.


Assuntos
Caenorhabditis elegans/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Genes ras , Sistema de Sinalização das MAP Quinases , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desenvolvimento Embrionário , Ativação Enzimática , Epistasia Genética , Feminino , Inativação Gênica , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases/genética , Penetrância , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Vulva/enzimologia , Vulva/crescimento & desenvolvimento , Vulva/patologia , Quinases raf/genética , Quinases raf/metabolismo
16.
Mol Syst Biol ; 11(11): 837, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26538579

RESUMO

Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/ultraestrutura , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Simulação de Acoplamento Molecular , Alinhamento de Sequência , Transdução de Sinais , Propriedades de Superfície
17.
Adv Exp Med Biol ; 896: 315-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165334

RESUMO

Signaling complexes within the cell convert extracellular cues into physiological outcomes. Their assembly involves signaling enzymes, allosteric regulators and scaffold proteins that often contain long stretches of disordered protein regions, display multi-domain architectures, and binding affinity between individual components is low. These features are indispensable for their central roles as dynamic information processing hubs, on the other hand they also make reconstruction of structurally homogeneous complex samples highly challenging. In this present chapter we discuss protein machinery which influences extracellular signal reception, intracellular pathway activity, and cytoskeletal or transcriptional activity.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
18.
Proc Natl Acad Sci U S A ; 109(14): 5277-82, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22403064

RESUMO

Signaling pathways depend on regulatory protein-protein interactions; controlling these interactions in cells has important applications for reengineering biological functions. As many regulatory proteins are modular, considerable progress in engineering signaling circuits has been made by recombining commonly occurring domains. Our ability to predictably engineer cellular functions, however, is constrained by complex crosstalk observed in naturally occurring domains. Here we demonstrate a strategy for improving and simplifying protein network engineering: using computational design to create orthogonal (non-crossreacting) protein-protein interfaces. We validated the design of the interface between a key signaling protein, the GTPase Cdc42, and its activator, Intersectin, biochemically and by solving the crystal structure of the engineered complex. The designed GTPase (orthoCdc42) is activated exclusively by its engineered cognate partner (orthoIntersectin), but maintains the ability to interface with other GTPase signaling circuit components in vitro. In mammalian cells, orthoCdc42 activity can be regulated by orthoIntersectin, but not wild-type Intersectin, showing that the designed interaction can trigger complex processes. Computational design of protein interfaces thus promises to provide specific components that facilitate the predictable engineering of cellular functions.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Cristalografia , GTP Fosfo-Hidrolases/química , Fatores de Troca do Nucleotídeo Guanina/química , Camundongos , Modelos Moleculares , Células NIH 3T3
19.
J Biol Chem ; 288(12): 8596-8609, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23382384

RESUMO

Mitogen-activated protein kinase (MAPK) activation depends on a linear binding motif found in all MAPK kinases (MKK). In addition, the PB1 (Phox and Bem1) domain of MKK5 is required for extracellular signal regulated kinase 5 (ERK5) activation. We present the crystal structure of ERK5 in complex with an MKK5 construct comprised of the PB1 domain and the linear binding motif. We show that ERK5 has distinct protein-protein interaction surfaces compared with ERK2, which is the closest ERK5 paralog. The two MAPKs have characteristically different physiological functions and their distinct protein-protein interaction surface topography enables them to bind different sets of activators and substrates. Structural and biochemical characterization revealed that the MKK5 PB1 domain cooperates with the MAPK binding linear motif to achieve substrate specific binding, and it also enables co-recruitment of the upstream activating enzyme and the downstream substrate into one signaling competent complex. Studies on present day MAPKs and MKKs hint on the way protein kinase networks may evolve. In particular, they suggest how paralogous enzymes with similar catalytic properties could acquire novel signaling roles by merely changing the way they make physical links to other proteins.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/química , Modelos Moleculares , Sequência de Aminoácidos , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , MAP Quinase Quinase 5/química , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/química , Dados de Sequência Molecular , Complexos Multiproteicos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Propriedades de Superfície
20.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 486-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23519423

RESUMO

Linear motifs normally bind with only medium binding affinity (Kd of ∼0.1-10 µM) to shallow protein-interaction surfaces on their binding partners. The crystallization of proteins in complex with linear motif-containing peptides is often challenging because the energy gained upon crystal packing between symmetry mates in the crystal may be on a par with the binding energy of the protein-peptide complex. Furthermore, for extracellular signal-regulated kinase 2 (ERK2) the protein-peptide docking surface is comprised of a small hydrophobic surface patch that is often engaged in the crystal packing of apo ERK2 crystals. Here, a rational surface-engineering approach is presented that involves mutating protein surface residues that are distant from the peptide-binding ERK2 docking groove to alanines. These ERK2 surface mutations decrease the chance of `unwanted' crystal packing of ERK2 and the approach led to the structure determination of ERK2 in complex with new docking peptides. These findings highlight the importance of negative selection in crystal engineering for weakly binding protein-peptide complexes.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Sítios de Ligação/genética , Cristalização , Cristalografia por Raios X , Metabolismo Energético/genética , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteína Quinase 1 Ativada por Mitógeno/genética , Simulação de Acoplamento Molecular/métodos , Peptídeos/genética , Ligação Proteica/genética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA