Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27895131

RESUMO

Recent studies have shown that immune responses against the cell-traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) can inhibit parasite infection. While these studies provide important evidence toward the development of vaccines targeting this protein, it remains unknown whether these responses could engage the Plasmodium falciparum CelTOS in vivo Using a newly developed rodent malaria chimeric parasite expressing the P. falciparum CelTOS (PfCelTOS), we evaluated the protective effect of in vivo immune responses elicited by vaccination and assessed the neutralizing capacity of monoclonal antibodies specific against PfCelTOS. Mice immunized with recombinant P. falciparum CelTOS in combination with the glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) or glucopyranosyl lipid adjuvant-liposome-QS21 (GLA-LSQ) adjuvant system significantly inhibited sporozoite hepatocyte infection. Notably, monoclonal antibodies against PfCelTOS strongly inhibited oocyst development of P. falciparum and Plasmodium berghei expressing PfCelTOS in Anopheles gambiae mosquitoes. Taken together, our results demonstrate that anti-CelTOS responses elicited by vaccination or passive immunization can inhibit sporozoite and ookinete infection and impair vector transmission.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Imunização , Imunização Passiva , Estágios do Ciclo de Vida , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Camundongos , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas Recombinantes
2.
Protein Expr Purif ; 81(2): 157-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21968453

RESUMO

A bottleneck to product development can be reliable expression of active target protein. A wide array of recombinant proteins in development, including an ever growing number of non-natural proteins, is being expressed in a variety of expression systems. A Pseudomonas fluorescens expression platform has been developed specifically for recombinant protein production. The development of an integrated molecular toolbox of expression elements and host strains, along with automation of strain screening is described. Examples of strain screening and scale-up experiments show rapid development of expression strains producing a wide variety of proteins in a soluble active form.


Assuntos
Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/metabolismo , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/biossíntese , Anticorpos/genética , Anticorpos/metabolismo , Antígenos/genética , Antígenos/metabolismo , Clonagem Molecular , Ativação Enzimática , Genes Bacterianos , Vetores Genéticos/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Dobramento de Proteína , Pseudomonas fluorescens/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Transcrição Gênica , Vacinas/genética , Vacinas/metabolismo
3.
Protein Expr Purif ; 78(1): 69-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21396452

RESUMO

Cost-effective production of soluble recombinant protein in a bacterial system remains problematic with respect to expression levels and quality of the expressed target protein. These constraints have particular meaning today as "biosimilar" versions of innovator protein drugs are entering the clinic and the marketplace. A high throughput, parallel processing approach to expression strain engineering was used to evaluate soluble expression of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. The human g-csf gene was optimized for expression in P. fluorescens and cloned into a set of periplasmic expression vectors. These plasmids were transformed into a variety of P. fluorescens host strains each having a unique phenotype, to evaluate soluble expression in a 96-well growth and protein expression format. To identify a strain producing high levels of intact, soluble Met-G-CSF product, more than 150 protease defective host strains from the Pfenex Expression Technology™ toolbox were screened in parallel using biolayer interferometry (BLI) to quantify active G-CSF binding to its receptor. A subset of these strains was screened by LC-MS analysis to assess the quality of the expressed G-CSF protein. A single strain with an antibiotic resistance marker insertion in the pfaI gene was identified that produced>99% Met-GCSF. A host with a complete deletion of the autotransporter-coding gene pfaI from the genome was constructed, and expression of soluble, active Met-GSCF in this strain was observed to be 350mg/L at the 1 liter fermentation scale.


Assuntos
Biotecnologia/métodos , Fator Estimulador de Colônias de Granulócitos/biossíntese , Pseudomonas fluorescens/genética , Proteínas Recombinantes/biossíntese , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Fermentação , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Cinética , Espectrometria de Massas , Camundongos , Peso Molecular , Periplasma/genética , Periplasma/metabolismo , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade
4.
Vaccine ; 39(42): 6333-6339, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34544599

RESUMO

Px563L is a next-generation anthrax vaccine candidate consisting of a protein subunit, mutant recombinant protective antigen SNKE167-ΔFF-315-E308D (mrPA), and liposome-embedded monophosphoryl lipid A (MPLA) adjuvant. Px563L has the potential to deliver an improved safety and immunogenicity profile relative to the currently licensed vaccine, which is produced from filtered B. anthracis culture supernatants. We conducted a Phase 1, double-blind, placebo-controlled, dose-escalation study in 54 healthy subjects to evaluate Px563L at 3 dose levels of mrPA (10, 50, and 80 mcg). For each dose level, 18 subjects were randomized in an 8:8:2 ratio to Px563L (mrPA with adjuvant), RPA563 (mrPA only) or placebo (saline). Each subject received an intramuscular (IM) injection on Day 0 and Day 28. Primary safety and immunogenicity analysis was conducted after all subjects completed the Day70 visit, a duration deemed clinically relevant for post-exposure prophylaxis. Long-term safety was assessed through Day 393. Vaccinations with Px563L at all dose levels were well-tolerated. There were no serious adverse events or adverse events (AE) leading to early withdrawal. In all treatment groups, most AEs were due to injection site reactions, and all AEs at the 10 and 50 mcg dose levels were mild. For the primary immunogenicity endpoint (protective toxin neutralizing antibody 50% neutralization factor [TNA NF50]), titers started to increase significantly after the second administration of Px563L, from Day35 through Day70, with the geometric mean and lower bound of the 95% confidence interval exceeding 0.56, a threshold correlating with significant survival in animal models of anthrax exposure. In conclusion, Px563L, administered as two IM doses 28 days apart, was well-tolerated and elicited a protective antibody response starting at seven days after the second vaccination. These findings support the continued development of Px563L in a two-dose regimen for anthrax post-exposure prophylaxis. ClinicalTrials.gov identifier NCT02655549.


Assuntos
Vacinas contra Antraz , Antraz , Adulto , Animais , Antraz/prevenção & controle , Vacinas contra Antraz/efeitos adversos , Anticorpos Neutralizantes , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Profilaxia Pós-Exposição , Vacinas Sintéticas/efeitos adversos
5.
FEMS Microbiol Lett ; 269(2): 256-64, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17250760

RESUMO

DNA microarray technology was used to survey changes in gene expression in Pseudomonas fluorescens after mitomycin C treatment. As expected, genes associated with the SOS response were upregulated, such as those encoding the recombination protein RecA, DNA repair protein RecN, excinuclease ABC subunit A UvrA, and the LexA repressor protein. Interestingly, expression of 33 clustered bacteriophage-like genes was upregulated, suggesting that mitomycin C (MMC) may induce a prophage resident in the P. fluorescens genome. However, no phage particles were detected in P. fluorescens strain DC206 that had been treated with MMC using transmission electron microscopy. The same preparation failed to produce phage plaques on lawns of any of 10 different Pseudomonas strains tested, indicating that the 33 bacteriophage-like gene cluster represents a defective prophage.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mitomicina/farmacologia , Pseudomonas fluorescens , Resposta SOS em Genética , Transcrição Gênica , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fagos de Pseudomonas/efeitos dos fármacos , Fagos de Pseudomonas/fisiologia , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiologia , Pseudomonas fluorescens/virologia , Regulação para Cima , Ativação Viral/efeitos dos fármacos , Ativação Viral/fisiologia
6.
Microb Cell Fact ; 5: 1, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16396686

RESUMO

BACKGROUND: In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD). RESULTS: The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR). CONCLUSION: We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (< 1 L) and large (20 L) fermentation scales.

7.
PLoS One ; 9(9): e107764, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247295

RESUMO

The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Pseudomonas fluorescens/genética , Proteínas Recombinantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Vacinas Antimaláricas/química , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação/métodos
8.
Biotechnol Lett ; 29(10): 1483-91, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17541504

RESUMO

Bacterial expression of recombinant proteins containing disulfide bonds is facilitated by transport of the proteins to the periplasmic space. Several Pseudomonas fluorescens signal sequences have been identified that efficiently direct proteins to the periplasm and provide solubility and yield advantages over the production of proteins fused to the PelB signal sequence in E. coli. For a single chain antibody fragment, the final yield varied from about 1 g/l to 10 g/l when expression in P. fluorescens involved fusion to various P. fluorescens signal sequences.


Assuntos
Periplasma/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Vetores Genéticos/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Pseudomonas fluorescens/genética , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA