Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Digit Imaging ; 28(1): 41-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25005868

RESUMO

This article summarizes the consensus reached at the Summit on Color in Medical Imaging held at the Food and Drug Administration (FDA) on May 8-9, 2013, co-sponsored by the FDA and ICC (International Color Consortium). The purpose of the meeting was to gather information on how color is currently handled by medical imaging systems to identify areas where there is a need for improvement, to define objective requirements, and to facilitate consensus development of best practices. Participants were asked to identify areas of concern and unmet needs. This summary documents the topics that were discussed at the meeting and recommendations that were made by the participants. Key areas identified where improvements in color would provide immediate tangible benefits were those of digital microscopy, telemedicine, medical photography (particularly ophthalmic and dental photography), and display calibration. Work in these and other related areas has been started within several professional groups, including the creation of the ICC Medical Imaging Working Group.


Assuntos
Cor/normas , Diagnóstico por Imagem/normas , Humanos , Padrões de Referência , Estados Unidos , United States Food and Drug Administration
2.
Diagn Pathol ; 19(1): 42, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395890

RESUMO

BACKGROUND: Staining tissue samples to visualise cellular detail and tissue structure is at the core of pathology diagnosis, but variations in staining can result in significantly different appearances of the tissue sample. While the human visual system is adept at compensating for stain variation, with the growth of digital imaging in pathology, the impact of this variation can be more profound. Despite the ubiquity of haematoxylin and eosin staining in clinical practice worldwide, objective quantification is not yet available. We propose a method for quantitative haematoxylin and eosin stain assessment to facilitate quality assurance of histopathology staining, enabling truly quantitative quality control and improved standardisation. METHODS: The stain quantification method comprises conventional microscope slides with a stain-responsive biopolymer film affixed to one side, called stain assessment slides. The stain assessment slides were characterised with haematoxylin and eosin, and implemented in one clinical laboratory to quantify variation levels. RESULTS: Stain assessment slide stain uptake increased linearly with duration of haematoxylin and eosin staining (r = 0.99), and demonstrated linearly comparable staining to samples of human liver tissue (r values 0.98-0.99). Laboratory implementation of this technique quantified intra- and inter-instrument variation of staining instruments at one point in time and across a five-day period. CONCLUSION: The proposed method has been shown to reliably quantify stain uptake, providing an effective laboratory quality control method for stain variation. This is especially important for whole slide imaging and the future development of artificial intelligence in digital pathology.


Assuntos
Inteligência Artificial , Corantes , Humanos , Amarelo de Eosina-(YS)/química , Coloração e Rotulagem , Corantes/química , Hematoxilina
3.
Med Phys ; 43(7): 4017, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27370120

RESUMO

PURPOSE: The authors discuss measurement methods and instrumentation useful for the characterization of the gray tracking performance of medical color monitors for diagnostic applications. The authors define gray tracking as the variability in the chromaticity of the gray levels in a color monitor. METHODS: The authors present data regarding the capability of color measurement instruments with respect to their abilities to measure a target white point corresponding to the CIE Standard Illuminant D65 at different luminance values within the grayscale palette of a medical display. The authors then discuss evidence of significant differences in performance among color measurement instruments currently available for medical physicists to perform calibrations and image quality checks for the consistent representation of color in medical displays. In addition, the authors introduce two metrics for quantifying grayscale chromaticity consistency of gray tracking. RESULTS: The authors' findings show that there is an order of magnitude difference in the accuracy of field and reference instruments. The gray tracking metrics quantify how close the grayscale chromaticity is to the chromaticity of the full white point (equal amounts of red, green, and blue at maximum level) or to consecutive levels (equal values for red, green, and blue), with a lower value representing an improved grayscale tracking performance. An illustrative example of how to calculate and report the gray tracking performance according to the Task Group definitions is provided. CONCLUSIONS: The authors' proposed methodology for characterizing the grayscale degradation in chromaticity for color monitors that can be used to establish standards and procedures aiding in the quality control testing of color displays and color measurement instrumentation.


Assuntos
Cor , Apresentação de Dados , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Algoritmos , Computadores , Diagnóstico por Imagem/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA