RESUMO
Breast cancer is a common type of cancer characterized by high mortality rates. However, chemotherapy is not selective and often leads to side-effects. Therefore, there is a need for the development of highly efficient drugs. Recent studies have shown that some extracellular vesicles (EVs) derived from cell cultures possess anti-cancer activity and hold great potential as cancer therapeutics. However, the use of mammalian cell cultures for EV production results in low productivity and high costs. To address this issue, extracellular vesicles derived from perilla leaves (Perex) were isolated and investigated for their anti-cancer activity in various cancer cells. Initially, a high concentration of Perex with a low level of impurities was successfully purified through a combination of ultrafiltration and size-exclusion chromatography. Perex exhibited potent anti-cancer activities, inhibiting the proliferation, migration, and invasion of MDA-MB-231 cancer cells, which have high levels of caveolin-1 compared to other cancer and normal cells. This selective attack on cancer cells with high levels of caveolin-1 reduces unwanted side-effects on normal cells. Considering its high productivity, low production cost, selective anti-cancer activity, and minimal side-effects, Perex represents a promising candidate for the therapeutic treatment of breast cancer.
Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Linhagem Celular Tumoral , Mamíferos/metabolismoRESUMO
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men in developed countries. The five-year survival rate for men diagnosed with early-stage PCa is approximately 100%, while it is less than 30% for castration-resistant PCa (CRPC). Currently, the detection of prostate-specific antigens as biomarkers for the prognosis of CRPC is criticized because of its low accuracy, high invasiveness, and high false-positive rate. Therefore, it is important to identify new biomarkers for prediction of CRPC progression. Extracellular vesicles (EVs) derived from tumors have been highlighted as potential markers for cancer diagnosis and prognosis. Specifically, urinary EVs directly reflect changes in the pathophysiological conditions of the urogenital system because it is exposed to prostatic secretions. Thus, detecting biomarkers in urinary EVs provides a promising approach for performing an accurate and non-invasive liquid biopsy for CPRC. In this study, we effectively isolated urinary EVs with low protein impurities using size-exclusion chromatography combined with ultrafiltration. After EV isolation and characterization, we evaluated the miRNAs in urinary EVs from healthy donors and patients with CRPC. The results indicated that miRNAs (miR-21-5p, miR-574-3p, and miR-6880-5p) could be used as potential biomarkers for the prognosis of CRPC. This analysis of urinary EVs contributes to the fast and convenient prognosis of diseases, including CRPC, in the clinical setting.
Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias de Próstata Resistentes à Castração , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Biópsia Líquida , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologiaRESUMO
On-site genetic detection needs to develop a sensitive and straightforward biosensor without special equipment, which can detect various genetic biomarkers. Hybridization chain reaction (HCR) amplifying signal isothermally could be considered as a good candidate for on-site detection. Here, we developed a novel genetic biosensor on the basis of enzyme-free dual-amplification of universal hybridization chain reaction (uHCR) and hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme. The uHCR is the strategy which enables simple design for multiple target detection by the introduction of target-specific trigger hairpin without changing the whole system according to a target change. Also, HRP-mimicking DNAzyme could produce a sensitive and quantitative colorimetric signal with increased stability with a limit of detection (LOD) of 5.67 nM. The universality of the uHCR biosensor was proven by the detection of four different targets (miR-21, miR-125b, KRAS-Q61K, and BRAF-V600E) for cancer diagnosis. The uHCR biosensor showed specificity that could discriminate single-nucleotide polymorphism. Moreover, the uHCR biosensor could detect targets in the diluted serum sample. Overall, the uHCR biosensor demonstrated the potential for field testing with a simple redesign without complicated steps or special equipment using a universal hairpin system and enzyme-free amplification. This strategy could enable stable and sensitive detection of a variety of targets. Therefore, it could be applied to urgent detection of various pathogens, remote diagnosis, and self-screening of diseases.
Assuntos
Técnicas Biossensoriais , Quadruplex G , Colorimetria , Peroxidase do Rábano Silvestre/química , HumanosRESUMO
Autophagy is a natural physiological process, and it induces the lysosomal degradation of intracellular components in response to environmental stresses, including nutrient starvation. Although an adequate autophagy level helps in cell survival, excessive autophagy triggered by stress such as starvation leads to autophagy-mediated apoptosis. Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, including monoclonal antibodies. However, apoptosis induced by high stress levels, including nutrient deficiency, is a major problem in cell cultures grown in bioreactors, which should be overcome. Therefore, it is necessary to develop a method for suppressing excessive autophagy and for maintaining an appropriate autophagy level in cells. Therefore, we investigated the effect of silkworm storage protein 1 (SP1), an antiapoptotic protein, on autophagy-mediated apoptosis. SP1-expressing CHO cells were generated to assess the effect and molecular mechanism of SP1 in suppressing autophagy. These cells were cultured under starvation conditions by treatment with Earle's balanced salt solution (EBSS) to induce autophagy. We observed that SP1 significantly inhibited autophagy-mediated apoptosis by suppressing caspase-3 activation and reactive oxygen species generation. In addition, SP1 suppressed EBSS-induced conversion of LC3-I to LC3-II and the expression of autophagy-related protein 7. Notably, basal Beclin-1 level was significantly low in the SP1-expressing cells, indicating that SP1 regulated upstream events in the autophagy pathway. Together, these findings suggest that SP1 offers a new strategy for overcoming severe autophagy-mediated apoptosis in mammalian cells, and it can be used widely in biopharmaceutical production.
Assuntos
Apoptose/genética , Autofagia/genética , Proteínas de Insetos/genética , Animais , Proteína Beclina-1/genética , Bombyx/genética , Células CHO , Sobrevivência Celular/genética , Cricetulus , Regulação da Expressão Gênica/genética , HumanosRESUMO
Nanoceria were synthesized by discharging plasma at 800â¯V with a frequency of 30â¯kHz for 0-25â¯min using a pulsed unipolar power supply into solutions containing 1 or 2â¯mM of Ce(NO3)2. UV-Vis spectroscopy showed a characteristic absorbance maxima at 304-320â¯nm for the nanoceria with increase in the intensity of the peaks as the concentration of Ce(NO3)2 increased. The peaks exhibited transition red shift due to nanoceria formation. High resolution transmission electron microscopy revealed that spherical nanoparticles with an average size of 7.0⯱â¯0.2â¯nm were formed by discharging plasma for 15â¯min. The nanoceria showed excellent pH dependent antioxidant properties in hydroxyl and superoxide anion radical scavenging assays. Effect of the nanoceria on cell viability in vitro and inhibition of reactive oxygen species (ROS) by the nanoceria were examined using HeLa cell lines. As the results, no toxic effect was found up to 1600⯵gâ¯mL-1 of nanoceria and they had an effective antioxidant property. Therefore, the nanoceria synthesized by one-step solution plasma process without employing hazardous chemicals have potential for utilization as antioxidant biomaterials and sustained release in the stream to scavenge ROS in the modern medicine.
Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Cério/química , Cério/farmacologia , Gases em Plasma/química , Antioxidantes/química , Materiais Biocompatíveis/química , Técnicas de Química Sintética , Células HeLa , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , SoluçõesRESUMO
Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial.
Assuntos
Apoptose , Células CHO/efeitos dos fármacos , Células CHO/fisiologia , Técnicas de Cultura de Células/métodos , Exossomos/metabolismo , Animais , Sobrevivência Celular , Cricetulus , Meios de Cultura/química , Citometria de Fluxo , MicroscopiaRESUMO
Stem cells and their paracrine factors have emerged as a resource for regenerative medicine. Many studies have shown the beneficial effects of paracrine factors secreted from adult stem cells, such as exosomes, on skin aging. However, to date, few reports have demonstrated the use of exosomes derived from human pluripotent stem cells for the treatment of skin aging. In this study, we collected exosomes from the conditioned medium of human induced pluripotent stem cells (iPSCs) and investigated the effect on aged human dermal fibroblasts (HDFs). Cell proliferation and viability were determined by an MTT assay and cell migration capacity was shown by a scratch wound assay and a transwell migration assay. To induce photoaging and natural senescence, HDFs were irradiated by UVB (315 nm) and subcultured for over 30 passages, respectively. The expression level of certain mRNAs was evaluated by quantitative real-time PCR (qPCR). Senescence-associated-ß-galactosidase (SA-ß-Gal) activity was assessed as a marker of natural senescence. As a result, we found that exosomes derived from human iPSCs (iPSCs-Exo) stimulated the proliferation and migration of HDFs under normal conditions. Pretreatment with iPSCs-Exo inhibited the damages of HDFs and overexpression of matrix-degrading enzymes (MMP-1/3) caused by UVB irradiation. The iPSCs-Exo also increased the expression level of collagen type I in the photo-aged HDFs. In addition, we demonstrated that iPSCs-Exo significantly reduced the expression level of SA-ß-Gal and MMP-1/3 and restored the collagen type I expression in senescent HDFs. Taken together, it is anticipated that these results suggest a therapeutic potential of iPSCs-Exo for the treatment of skin aging.
Assuntos
Senescência Celular , Exossomos/metabolismo , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Envelhecimento da Pele/fisiologia , Biomarcadores/metabolismo , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Derme/citologia , Exossomos/efeitos da radiação , Exossomos/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Envelhecimento da Pele/efeitos da radiação , Raios UltravioletaRESUMO
Transcription factors have been studied as an important drug candidate. Ever since the successful generation of induced pluripotent stem cells (iPSCs), there has been tremendous interest in reprogramming transcription factors. Because of the safety risks involved in a virus-based approach, many researchers have been trying to deliver transcription factors using nonintegrating materials. Thus, delivery of transcription factors produced as recombinant proteins in E. coli was proposed as an alternative method. However, the low level of soluble expression and instability of such recombinant proteins are potential barriers. We engineered a Bombyx mori 30Kc19 protein as a fusion partner for transcription factors to overcome those problems. We have previously reported that 30Kc19 protein can be produced as a soluble form in E. coli and has a cell-penetrating property and a protein-stabilizing effect. Transcription factors fused with 30Kc19 (Oct4-30Kc19, Sox2-30Kc19, c-Myc-30Kc19, L-Myc-30Kc19, and Klf4-30Kc19) were produced as recombinant proteins. Interestingly, Oct4 and L-Myc were expressed as a soluble form by conjugating with 30Kc19 protein, whereas Oct4 alone and L-Myc alone aggregated. The 30Kc19 protein also enhanced the stability of transcription factors both in vitro and in cells. In addition, 30Kc19-conjugated transcription factors showed rapid delivery into cells and transcriptional activity significantly increased. Overall, 30Kc19 protein conjugation simultaneously enhanced soluble expression, stability, and transcriptional activity of transcription factors. We propose that the conjugation with 30Kc19 protein is a novel approach to solve the technical bottleneck of gene regulation using transcription factors.
Assuntos
Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Proteínas de Insetos/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Animais , Bombyx , Peptídeos Penetradores de Células/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Fator 4 Semelhante a Kruppel , Engenharia de Proteínas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Fatores de Transcrição/metabolismoRESUMO
Fabry disease is a genetic lysosomal storage disease caused by deficiency of α-galactosidase, the enzyme-degrading neutral glycosphingolipid that is transported to lysosome. Glycosphingolipid accumulation by this disease causes multi-organ dysfunction and premature death of the patient. Currently, enzyme replacement therapy (ERT) using recombinant α-galactosidase is the only treatment available for Fabry disease. To maximize the efficacy of treatment, enhancement of cellular delivery and enzyme stability is a challenge in ERT using α-galactosidase. In this study, protein nanoparticles using human serum albumin (HSA) and 30Kc19 protein, originating from silkworm, were used to enhance the delivery and intracellular α-galactosidase stability. 30Kc19-HSA nanoparticles loaded with the α-galactosidase were formed by desolvation method. 30Kc19-HSA nanoparticles had a uniform spherical shape and were well dispersed in cell culture media. 30Kc19-HSA nanoparticles had negligible toxicity to human cells. The nanoparticles exhibited enhanced cellular uptake and intracellular stability of delivered α-galactosidase in human foreskin fibroblast. Additionally, they showed enhanced globotriaosylceramide degradation in Fabry patients' fibroblasts. It is expected that 30Kc19-HSA protein nanoparticles could be used as an effective tool for efficient delivery and enhanced stability of drugs.
Assuntos
Portadores de Fármacos/metabolismo , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/terapia , Nanopartículas/metabolismo , Albumina Sérica/metabolismo , alfa-Galactosidase/metabolismo , Animais , Biotransformação , Bombyx , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Proteínas de Insetos/metabolismo , Nanopartículas/ultraestrutura , Albumina Sérica Humana , Triexosilceramidas/metabolismoRESUMO
In previous studies, 30Kc19, a lipoprotein in silkworm hemolymph, enhanced productivity and glycosylation by expression of a 30Kc19 gene or supplementation with a recombinant 30Kc19 protein. Additionally, 30Kc19 exhibited enzyme-stabilizing and cell-penetrating abilities in vitro. In this study, we hypothesized that supplemented 30Kc19 penetrated into the cell and enhanced the stability of the cellular enzyme. We investigated this using in vitro and cellular assessments. The activity of sialyltransferase (ST) and isolated mitochondrial complex I/III was enhanced with 30Kc19 in dose-dependent manner while initial reaction rate was unchanged, suggesting that 30Kc19 enhanced enzyme stability rather than specific activity. For intracellular enzyme activity assessment, ST activity inside erythropoietin (EPO)-producing Chinese hamster ovary (CHO) cells increased more than 25 % and mitochondrial complex II activity in HeLa cells increased more than 50 % with 30Kc19. The increase in intracellular ST activity resulted in an increase in sialic acid content of glycoproteins produced in CHO cells supplemented with 30Kc19. Similarly, enhanced mitochondrial complex activity increased mitochondrial membrane potential and ATP production in HeLa cells with 30Kc19 by over 50 %. Because 30Kc19 stabilized intracellular enzymes for glycosylation and enhanced protein productivity with supplementation in the culture medium, we expect that 30Kc19 can be a valuable tool for effective industrial recombinant protein production.
Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Lipoproteínas/metabolismo , Mitocôndrias/enzimologia , Sialiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bombyx , Células CHO , Cricetulus , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo II de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Estabilidade Enzimática , Células HeLa , HumanosRESUMO
Rationale: Inflammatory bowel disease (IBD) is a chronic disorder characterized by persistent inflammation of the gastrointestinal tract. Due to the elusive causes and complex mechanisms of this disorder, the development of highly effective therapeutic drugs is crucial. Extracellular vesicles (EVs) are small membrane-bound structures released by cells into the surrounding environment. Recent research has witnessed a substantial surge in the utilization of plant-derived EVs that offer advantages such as high productivity, low production costs, diverse biological functions, and low cytotoxicity. Herein, Red cabbage-derived EVs (Rabex) were investigated and engineered as potential therapeutic agents for IBD. Methods: Rabex was engineered by surface conjugation with hyaluronic acid (t-Rabex) to simultaneously enhance the targeting of intestinal epithelial and immune cells, thereby improving their therapeutic targeting and efficacy. The properties and therapeutic potential of t-Rabex were assessed through both in vitro studies and in vivo experiments, focusing on their capacity to reach the gastrointestinal tract and exert a therapeutic effect compared to unmodified Rabex. Results: Rabex exhibited dual functions, including the suppression of inflammation in macrophages and promotion of colon epithelial cell regeneration, both of which are critical for effective IBD treatment. In vitro and in vivo studies of t-Rabex have demonstrated its superior targeting efficiency to the gastrointestinal tract and therapeutic efficacy compared to Rabex, making it a promising and more effective IBD treatment. Understanding the mechanism of action of t-Rabex in colonic tissues highlighted its anti-inflammatory, antioxidative, and tight-junction maintenance properties. Conclusions: These findings underscore the potential of t-Rabex as a precise therapeutic agent for IBD and shed light on the diverse applications of plant-derived EVs.
Assuntos
Colite , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Colite/tratamento farmacológico , Humanos , Brassica , Doenças Inflamatórias Intestinais/terapia , Inflamação , Ácido Hialurônico/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Células RAW 264.7 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacosRESUMO
An important aspect of vascular biology is the identification of regulators of stress-sensitive genes that play critical roles in mediating inflammatory response. Here, we show that expression of HuR in human umbilical vein endothelial cells is regulated by shear stress and statin treatment; HuR, in turn, regulates other stress-sensitive genes such as Kruppel-like factor 2 (Klf2), endothelial nitric oxide synthase (eNOS), and bone morphogenic protein 4 (BMP-4). We found that siRNA knockdown of HuR-inhibited inflammatory responses in endothelial cells, including ICAM-1 and VCAM-1 up-regulation, NFkappaB phosphorylation, and adhesion of monocytes. Tissue staining of the mouse aorta revealed increased HuR expression in the lesser curvature region of the arch that is exposed to disturbed flow, consistent with our in vitro data. Taken together, these results suggest that HuR plays a critical role in inducing inflammatory response of endothelial cells under mechanical and biochemical stresses.
Assuntos
Antígenos de Superfície/fisiologia , Células Endoteliais/citologia , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/fisiologia , Veias Umbilicais/citologia , Animais , Antígenos de Superfície/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Mecânico , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Extracellular vesicles (EVs) are becoming increasingly important in liquid biopsy for cancer because they contain multiple biomarkers, including proteins and RNAs, and circulate throughout the body. Cancer cell-derived EVs are highly heterogeneous, and multiplexed biomarker detection techniques are required to improve the accuracy of diagnosis. In addition, in situ EV biomarker detection increases the efficiency of the detection process because EVs are difficult to handle. In this study, in situ simultaneous detection of EV surface proteins, programmed cell death-ligand 1 (PD-L1), and internal miRNA-21 (miR-21) analyzed by conventional flow cytometry was developed for a breast cancer liquid biopsy. However, the majority of EVs were not recognized by flow cytometry for biomarker detection because the size of EVs was below the detectable size range of the flow cytometer. To solve this problem, the formation of EV clusters was induced by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-polyethylene glycol-DSPE during biomarker detection. Consequently, both PD-L1 and miR-21 detection signals from cancer cell-derived EVs were drastically increased, making them distinguishable from normal cell-derived EVs. The in situ simultaneous cancer biomarker detection from EV clusters analyzed by flow cytometry contributes to an increase in the sensitivity and accuracy of the EV-based liquid biopsy for cancer.
Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Citometria de Fluxo/métodos , Proteínas de Membrana/metabolismo , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem CelularRESUMO
Nanocarrier-assisted sonodynamic therapy (SDT) has shown great potential for the effective and targeted treatment of deep-seated tumors by overcoming the critical limitations of sonosensitizers. However, in vivo SDT using nanocarriers is still constrained by their intrinsic toxicity and nonspecific cargo release. In this study, we developed bioreducible exosomes for the safe and tumor-specific delivery of mitochondria-targeting sonosensitizers [triphenylphosphonium-conjugated chlorin e6 (T-Ce6)] and glycolysis inhibitors (FX11). Redox-cleavable diselenide linker-bearing lipids were embedded into exosomes to trigger drug release in response to overexpressed glutathione in the tumor microenvironment. Bioreducible exosomes facilitate the cytoplasmic release of their payload in the reducing environment of tumor cells. They significantly enhance drug release and sonodynamic effects when irradiated with ultrasound (US). The mitochondria-targeted accumulation of T-Ce6 efficiently damaged the mitochondria of the cells under US irradiation, accelerating apoptotic cell death. FX11 substantially inhibited cellular energy metabolism, potentiating the antitumor efficacy of mitochondria-targeted SDT. Bioreducible exosomes effectively suppressed tumor growth in mice without significant systemic toxicity, via a combination of mitochondria-targeted SDT and energy metabolism-targeted therapy. This study offers new insights into the use of dual stimuli-responsive exosomes encapsulating sonosensitizers for safe and targeted sonodynamic cancer therapy.
Assuntos
Antineoplásicos , Exossomos , Neoplasias , Porfirinas , Animais , Camundongos , Exossomos/metabolismo , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Mitocôndrias/metabolismo , Porfirinas/uso terapêutico , Glicólise , Espécies Reativas de Oxigênio/metabolismo , Microambiente TumoralRESUMO
Sonodynamic therapy (SDT) has emerged as an effective therapeutic modality as it employs ultrasound (US) to eradicate deep-seated tumors noninvasively. However, the therapeutic efficacy of SDT in clinical settings remains limited owing to the low aqueous stability and poor pharmacokinetic properties of sonosensitizers. In this study, extracellular vesicles (EVs), which have low systemic toxicity, were used as clinically available nanocarriers to effectively transfer a sonosensitizer to cancer cells. Chlorin e6 (Ce6), a sonosensitizer, was conjugated to a mitochondria-targeting triphenylphosphonium (TPP) moiety and loaded into EVs to enhance the efficacy of SDT, because mitochondria are critical subcellular organelles that regulate cell survival and death. Additionally, piperlongumine (PL), a pro-oxidant and cancer-specific chemotherapeutic agent, was co-encapsulated into EVs to achieve efficient and selective anticancer activity. The EVs substantially amplified the cellular internalization of TPP-conjugated Ce6 (TPP-Ce6), resulting in the enhanced generation of intracellular reactive oxygen species (ROS) in MCF-7 human breast cancer cells upon US exposure. Importantly, EVs encapsulating TPP-Ce6 effectively destroyed the mitochondria under irradiation with US, leading to efficient anticancer activity. The co-encapsulation of pro-oxidant PL into EVs significantly enhanced the SDT efficacy in MCF-7 cells through the excessive generation of ROS. Moreover, the EV co-encapsulating TPP-Ce6 and PL [EV(TPP-Ce6/PL)] exhibited cancer-specific cell death owing to the cancer-selective apoptosis triggered by PL. In vivo study using MCF-7 tumor-xenograft mice revealed that EV(TPP-Ce6/PL) effectively accumulated in tumors after intravenous injection. Notably, treatment with EV(TPP-Ce6/PL) and US inhibited tumor growth significantly without causing systemic toxicity. This study demonstrated the feasibility of using EV(TPP-Ce6/PL) for biocompatible and cancer-specific chemo-SDT.
Assuntos
Antineoplásicos , Vesículas Extracelulares , Porfirinas , Terapia por Ultrassom , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Mitocôndrias , Terapia por Ultrassom/métodos , Vesículas Extracelulares/metabolismo , Porfirinas/uso terapêuticoRESUMO
Glioblastoma (GBM) is the most aggressive malignant brain tumor and has a high mortality rate. Photodynamic therapy (PDT) has emerged as a promising approach for the treatment of malignant brain tumors. However, the use of PDT for the treatment of GBM has been limited by its low bloodâbrain barrier (BBB) permeability and lack of cancer-targeting ability. Herein, brain endothelial cell-derived extracellular vesicles (bEVs) were used as a biocompatible nanoplatform to transport photosensitizers into brain tumors across the BBB. To enhance PDT efficacy, the photosensitizer chlorin e6 (Ce6) was linked to mitochondria-targeting triphenylphosphonium (TPP) and entrapped into bEVs. TPP-conjugated Ce6 (TPP-Ce6) selectively accumulated in the mitochondria, which rendered brain tumor cells more susceptible to reactive oxygen species-induced apoptosis under light irradiation. Moreover, the encapsulation of TPP-Ce6 into bEVs markedly improved the aqueous stability and cellular internalization of TPP-Ce6, leading to significantly enhanced PDT efficacy in U87MG GBM cells. An in vivo biodistribution study using orthotopic GBM-xenografted mice showed that bEVs containing TPP-Ce6 [bEV(TPP-Ce6)] substantially accumulated in brain tumors after BBB penetration via transferrin receptor-mediated transcytosis. As such, bEV(TPP-Ce6)-mediated PDT considerably inhibited the growth of GBM without causing adverse systemic toxicity, suggesting that mitochondria are an effective target for photodynamic GBM therapy.
RESUMO
Previously, we reported that the expression of Bombyx mori 30Kc6 gene in Chinese hamster ovary (CHO) cells increases recombinant protein production by both inhibiting apoptosis and enhancing specific productivity. In this study, in order to gain a thorough understanding of the roles of 30Kc6 gene in antibody production, the mechanisms modulating cell apoptosis and specific productivity were investigated. 30Kc6 gene was introduced into a CHO cell line producing a chimeric anti-human CD20 monoclonal antibody. The stable expression of 30Kc6 increased cell viability and productivity by 46.7% and 3.4-folds, respectively. It was observed that the Bax translocation from cytosol to mitochondria and the cytochrome c (cyt c) release from mitochondrial intermembrane space to cytosol were repressed, which resulted in a decrease in the activation of apoptosis executioner, caspase-3. On the other hand, 30Kc6 expression increased the specific productivity by 2.3-folds. However, at the transcription level, the relative levels of heavy and light chain mRNAs increased only by 8.3% and 8.7%, respectively, which was not accountable for the observed increment in the specific productivity. Instead, the mitochondrial membrane potential was maintained and the ATP generation was stimulated. A higher ATP level could activate the mammalian target of rapamycin (mTOR), which drives the translation initiation and elongation by phosphorylating eukaryotic initiation factor 4E binding protein 1 (4EBP1) and S6 kinase 1 (S6K1). In the 30Kc6-expressing cells, both the 4EBP1 and S6K1 were phosphorylated at higher levels, which indicated that the increased specific productivity primarily resulted from the boost of translation process. Furthermore, it was also found that the specific uptake rates of glucose and glutamine were not affected by 30Kc6 expression, demonstrating that the enhanced ATP generation and consequently maintained mTOR activity were due to 30Kc6 expression but not the different metabolic uptake rates. In conclusion, 30Kc6 expression inhibited apoptosis by repressing the Bax translocation, which down-regulated the downstream cascade responses including cyt c release and caspase-3 activation. Also, 30Kc6 expression increased the specific productivity by enhancing the translation process.
Assuntos
Anticorpos Monoclonais/biossíntese , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/metabolismo , Animais , Bombyx , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Citocromos c/antagonistas & inibidores , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas de Insetos/genética , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Proteína X Associada a bcl-2/antagonistas & inibidoresRESUMO
Molecular beacons (MBs) have the potential to provide a powerful tool for rapid RNA detection in living cells, as well as monitoring the dynamics of RNA expression in response to external stimuli. To exploit this potential, it is necessary to distinguish true signal from background signal due to non-specific interactions. Here, we show that, when cyanine-dye labeled 2'-deoxy and 2'-O-methyl oligonucleotide probes are inside living cells for >5 h, most of their signals co-localize with mitochondrial staining. These probes include random-sequence MB, dye-labeled single-strand linear oligonucleotide and dye-labeled double-stranded oligonucleotide. Using carbonyl cyanide m-chlorophenyl hydrazone treatment, we found that the non-specific accumulation of oligonucleotide probes at mitochondria was driven by mitochondrial membrane potential. We further demonstrated that the dye-labeled oligonucleotide probes were likely on/near the surface of mitochondria but not inside mitochondrial inner membrane. Interestingly, oligonucleotides probes labeled respectively with Alexa Fluor 488 and Alexa Fluor 546 did not accumulate at mitochondria, suggesting that the non-specific interaction between dye-labeled ODN probes and mitochondria is dye-specific. These results may help design and optimize fluorescence imaging probes for long-time RNA detection and monitoring in living cells.
Assuntos
Corantes Fluorescentes/química , Mitocôndrias/química , Sondas de Oligonucleotídeos/análise , Carbocianinas/química , Células Cultivadas , Humanos , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/química , Sondas de Oligonucleotídeos/químicaRESUMO
This paper presents a microfluidic device that can isolate extracellular vesicles (EVs) with multiple size intervals in a simple, effective, and automated manner. We accomplish this size-selective separation using a vertically movable plunger and a rotationally movable chip. The chip has open chambers with nanoporous filters that are sequentially connected by check valves. The plunger speed is adjusted to reduce chamber pressurization in order to prevent EV deformation, thereby achieving a high separation resolution. Herein, high-purity EVs with a purity ten times higher than that of ultracentrifugation were obtained by washing three times with a high EV recovery rate of 89%. For the analysis of device performance, we used polymer nanobeads, preformed liposomes, and canine blood plasma. To demonstrate the utility of the device, we applied size-selective isolation to EVs that were secreted by endothelial cells under shear flow. The results revealed that the cells secreted more EVs of larger size, the expression of CD63 protein was higher for EVs with a larger size, and a high amount of TSG101 protein was expressed under the condition of no shear flow. This device is envisioned to facilitate molecular analysis and EV-based biomarker discovery that use various biofluids, including blood plasma, urine, and cell culture supernatants. Our device automates size-selective EV filtration that requires laborious multiple washing and separation steps.
Assuntos
Células Endoteliais , Vesículas Extracelulares , Animais , Biomarcadores/metabolismo , Cães , Vesículas Extracelulares/metabolismo , Lipossomos/metabolismo , Polímeros/metabolismoRESUMO
A novel haloarchaeal species designated as MBLA0099T was isolated from seawater near Yeongheung Island. Cells were Gram-negative, non-motile, red-pigmented, and rod-shaped. They grew at 10-45°C, within pH 5.5-9.0, and between 7.5% and 30% NaCl concentrations. Cells were able to grow without Mg2+ and were lysed in distilled water. The size of the whole-genome and G + C content of DNA was 3.02 Mb and 68.9 mol%, respectively. Phylogenetic analysis shows that the strain MBLA0099T belongs to the genus Halorubrum. The average nucleotide and amino acid identity, and in silico DNA-DNA hybridization values were below the species delineation threshold. Pan-genomic analysis revealed that 3.2% of all genes present in strain MBLA0099T were unique to the strain. The red carotenoid produced by strain MBLA0099T was subjected to spectrometric and chromatographic analyses and confirmed to be bacterioruberin as C50 carotenoid. Mevalonic acid, terpenoid backbone, and carotenoid biosynthesis pathway were annotated for strain MBLA0099T. The C50 carotenoid production by strain MBLA0099T was also enhanced under various stress conditions including relatively netural pH, high oxidative and salinity conditions. Additionally, the strain MBLA0099T-derived bacterioruberin showed the antioxidant activity with EC50 value of 12.29 µg/ml, based on the evaluation of DPPH free radical scavenging activity. The present study would be the first report on the identification of C50 carotenoid from the strain MBLA0099T representing a novel species of the genus Halorubrum, for which the name Halorubrum ruber sp. nov. is proposed. The typestrain used was MBLA0099T (= KCTC 4296T = JCM 34701T).