Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 145(23): 7571-7581, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33030462

RESUMO

Directed enzyme evolution has led to significant application of biocatalysis for improved chemical transformations throughout the scientific and industrial communities. Biocatalytic reactions utilizing evolved enzymes immobilized within microporous supports have realized unique advantages, including notably higher enzyme stability, higher enzyme load, enzyme reusability, and efficient product-enzyme separation. To date, limited analytical methodology is available to discern the spatial and chemical distribution of immobilized enzymes, in which techniques for surface visualization, enzyme stability, or activity are instead employed. New analytical tools to investigate enzyme immobilization are therefore needed. In this work, development, application, and evaluation of an analytical methodology to study enzyme immobilization is presented. Specifically, Raman hyperspectral imaging with principal component analysis, a multivariate method, is demonstrated for the first time to investigate evolved enzymes immobilized onto microporous supports for biocatalysis. Herein we demonstrate the ability to spatially and spectrally resolve evolved pantothenate kinase (PanK) immobilized onto two commercially-available, chemically-diverse porous resins. This analytical methodology is able to chemically distinguish evolved enzyme, resin, and chemical species pertinent to immobilization. As such, a new analytical approach to study immobilized biocatalysts is demonstrated, offering potential wide application for analysis of protein or biomolecule immobilization.


Assuntos
Enzimas Imobilizadas , Imageamento Hiperespectral , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Análise Multivariada
2.
Anal Chem ; 89(16): 8351-8357, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28727449

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) coupled with a time-of-flight (TOF) mass-spectrometry (MS) detector is acknowledged to be very useful for analysis of biological molecules. At the same time, hydrogen-deuterium exchange (HDX) is a well-known technique for studying protein higher-order structure. However, coupling MALDI with HDX has been challenging because of undesired back-exchange reactions during analysis. In this report, we survey an approach that utilizes MALDI coupled with an automated sample preparation to compare global conformational changes of proteins under different solution conditions using differential HDX. A nonaqueous matrix was proposed for MALDI sample preparation to minimize undesirable back-exchange. An automated experimental setup based on the use of a liquid-handling robot and automated data acquisition allowed for tracking protein conformational changes as a difference in the number of protons exchanged to deuterons at specified solution conditions. Experimental time points to study the deuteration-labeling kinetics were obtained in a fully automated manner. The use of a nonaqueous matrix solution allowed experimental error to be minimized to within 1% RSD. We applied this newly developed MALDI-HDX workflow to study the effect of several common excipients on insulin folding stability. The observed results were corroborated by literature data and were obtained in a high-throughput and automated manner. The proposed MALDI-HDX approach can also be applied in a high-throughput manner for batch-to-batch higher-order structure comparison, as well as for the optimization of protein chemical modification reactions.


Assuntos
Insulina/química , Ubiquitina/química , Animais , Bovinos , Medição da Troca de Deutério , Humanos , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Anal Chem ; 85(17): 8102-11, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23855585

RESUMO

We compare a coherent Raman imaging modality, broadband coherent anti-Stokes Raman scattering (BCARS) microscopy, with spontaneous Raman microscopy for quantitative and qualitative assessment of multicomponent pharmaceuticals. Indomethacin was used as a model active pharmaceutical ingredient (API) and was analyzed in a tabulated solid dosage form, embedded within commonly used excipients. In comparison with wide-field spontaneous Raman chemical imaging, BCARS acquired images 10× faster, at higher spatiochemical resolution and with spectra of much higher SNR, eliminating the need for multivariate methods to identify chemical components. The significant increase in spatiochemical resolution allowed identification of an unanticipated API phase that was missed by the spontaneous wide-field method and bulk Raman spectroscopy. We confirmed the presence of the unanticipated API phase using confocal spontaneous Raman, which provided spatiochemical resolution similar to BCARS but at 100× slower acquisition times.


Assuntos
Formas de Dosagem , Microscopia/métodos , Preparações Farmacêuticas/análise , Análise Espectral Raman/métodos , Preparações Farmacêuticas/química , Difração de Raios X/métodos
4.
ACS Appl Polym Mater ; 3(3): 1525-1536, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34368765

RESUMO

In pharmaceutical oral drug delivery development, about 90% of drugs in the pipeline have poor aqueous solubility leading to severe challenges with oral bioavailability and translation to effective and safe drug products. Amorphous solid dispersions (ASDs) have been utilized to enhance the oral bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, a limited selection of regulatory-approved polymer excipients exists for the development and further understanding of tailor-made ASDs. Thus, a significant need exists to better understand how polymers can be designed to interact with specific API moieties. Here, we demonstrate how an automated combinatorial library approach can be applied to the synthesis and screening of polymer excipients for the model drug probucol. We synthesized a library of 25 random heteropolymers containing one hydrophilic monomer (2-hydroxypropyl acrylate (HPA)) and four hydrophobic monomers at varied incorporation. The performance of ASDs made by a rapid film casting method was evaluated by dissolution using ultra-performance liquid chromatography (UPLC) sampling at various time points. This combinatorial library and rapid screening strategy enabled us to identify a relationship between polymer hydrophobicity, monomer hydrophobic side group geometry, and API dissolution performance. Remarkably, the most effective synthesized polymers displayed slower drug release kinetics compared to industry standard polymer excipients, showing the ability to modulate the drug release profile. Future coupling of high throughput polymer synthesis, high throughput screening (HTS), and quantitative modeling would enable specification of designer polymer excipients for specific API functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA