Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 112(2): 463-474, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530091

RESUMO

PURPOSE: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. METHODS AND MATERIALS: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). RESULTS: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (≥94% of the dose in 98% of the volume [D98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D98%: IMPT 94% ± 5%, VMAT 96% ± 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. CONCLUSIONS: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging.


Assuntos
Neoplasias Esofágicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Diafragma/diagnóstico por imagem , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Humanos , Órgãos em Risco/diagnóstico por imagem , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Phys Med Biol ; 66(10)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862616

RESUMO

Deformable image registration (DIR) is an important component for dose accumulation and associated clinical outcome evaluation in radiotherapy. However, the resulting deformation vector field (DVF) is subject to unavoidable discrepancies when different algorithms are applied, leading to dosimetric uncertainties of the accumulated dose. We propose here an approach for proton therapy to estimate dosimetric uncertainties as a consequence of modeled or estimated DVF uncertainties. A patient-specific DVF uncertainty model was built on the first treatment fraction, by correlating the magnitude differences of five DIR results at each voxel to the magnitude of any single reference DIR. In the following fractions, only the reference DIR needs to be applied, and DVF geometric uncertainties were estimated by this model. The associated dosimetric uncertainties were then derived by considering the estimated geometric DVF uncertainty, the dose gradient of fractional recalculated dose distribution and the direction factor from the applied reference DIR of this fraction. This estimated dose uncertainty was respectively compared to the reference dose uncertainty when different DIRs were applied individually for each dose warping. This approach was validated on seven NSCLC patients, each with nine repeated CTs. The proposed model-based method is able to achieve dose uncertainty distribution on a conservative voxel-to-voxel comparison within ±5% of the prescribed dose to the 'reference' dosimetric uncertainty, for 77% of the voxels in the body and 66%-98% of voxels in investigated structures. We propose a method to estimate DIR induced uncertainties in dose accumulation for proton therapy of lung tumor treatments.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
3.
Radiother Oncol ; 157: 210-218, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545257

RESUMO

PURPOSE: Compared to volumetric modulated arc therapy (VMAT), clinical benefits are anticipated when treating thoracic tumours with intensity-modulated proton therapy (IMPT). However, the current concern of plan robustness as a result of motion hampers its wide clinical implementation. To define an optimal protocol to treat lung and oesophageal cancers, we present a comprehensive evaluation of IMPT planning strategies, based on patient 4DCTs and machine log files. MATERIALS AND METHODS: For ten lung and ten oesophageal cancer patients, a planning 4DCT and weekly repeated 4DCTs were collected. For these twenty patients, the CTV volume and motion were assessed based on the 4DCTs. In addition to clinical VMAT plans, layered rescanned 3D and 4D robust optimised IMPT plans (IMPT_3D and IMPT_4D respectively) were generated, and approved clinically, for all patients. The IMPT plans were then delivered in dry runs at our proton facility to obtain log files, and subsequently evaluated through our 4D robustness evaluation method (4DREM). With this method, for each evaluated plan, fourteen 4D accumulated scenario doses were obtained, representing 14 possible fractionated treatment courses. RESULTS: From VMAT to IMPT_3D, nominal Dmean(lungs-GTV) decreased 2.75 ± 0.56 GyRBE and 3.76 ± 0.92 GyRBE over all lung and oesophageal cancer patients, respectively. A more pronounced reduction was verified for Dmean(heart): 5.38 ± 7.36 GyRBE (lung cases) and 9.51 ± 2.25 GyRBE (oesophagus cases). Target coverage robustness of IMPT_3D was sufficient for 18/20 patients. Averaged dose in critical structures over all 4DREM scenarios changed only slightly for both IMPT_3D and IMPT_4D. Relative to IMPT_3D, no gain in IMPT_4D was observed. CONCLUSION: The dosimetric superiority of IMPT over VMAT has been established. For most thoracic tumours, our IMPT_3D planning protocol showed to be robust and clinically suitable. Nevertheless, accurate patient positioning and adapting to anatomical variations over the course of treatment remain compulsory.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Radiother Oncol ; 159: 136-143, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771576

RESUMO

PURPOSE: A major burden of introducing an online daily adaptive proton therapy (DAPT) workflow is the time and resources needed to correct the daily propagated contours. In this study, we evaluated the dosimetric impact of neglecting the online correction of the propagated contours in a DAPT workflow. MATERIAL AND METHODS: For five NSCLC patients with nine repeated deep-inspiration breath-hold CTs, proton therapy plans were optimised on the planning CT to deliver 60 Gy-RBE in 30 fractions. All repeated CTs were registered with six different clinically used deformable image registration (DIR) algorithms to the corresponding planning CT. Structures were propagated rigidly and with each DIR algorithm and reference structures were contoured on each repeated CT. DAPT plans were optimised with the uncorrected, propagated structures (propagated DAPT doses) and on the reference structures (ideal DAPT doses), non-adapted doses were recalculated on all repeated CTs. RESULTS: Due to anatomical changes occurring during the therapy, the clinical target volume (CTV) coverage of the non-adapted doses reduces on average by 9.7% (V95) compared to an ideal DAPT doses. For the propagated DAPT doses, the CTV coverage was always restored (average differences in the CTV V95 < 1% compared to the ideal DAPT doses). Hotspots were always reduced with any DAPT approach. CONCLUSION: For the patients presented here, a benefit of online DAPT was shown, even if the daily optimisation is based on propagated structures with some residual uncertainties. However, a careful (offline) structure review is necessary and corrections can be included in an offline adaption.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
Phys Med Biol ; 65(23): 23NT01, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33120367

RESUMO

The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus®Plus (PPlus) and Proteus®One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Movimento , Dosagem Radioterapêutica
6.
Radiother Oncol ; 151: 66-72, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663538

RESUMO

BACKGROUND AND PURPOSE: Intensity-modulated proton therapy (IMPT) is expected to result in clinical benefits by lowering radiation dose to organs-at-risk (OARs). However, there are concerns about plan robustness due to motion. To address this uncertainty we evaluated the robustness of IMPT compared to the widely clinically used volumetric modulated arc therapy (VMAT) on weekly repeated computed tomographies (CT). MATERIALS AND METHODS: 19 patients with oesophageal cancer were evaluated. IMPT and VMAT plans were created on a planning 4-Dimensional CT (p4DCT) and evaluated on weekly repeated 4DCTs (r4DCT). In case of inadequate target coverage or unacceptable high dose to normal tissue, re-planning was performed. Dose distributions of the r4DCTs were warped to p4DCT, resulting in an estimated actual given dose (EAGD). RESULTS: Compared to VMAT, IMPT resulted in significantly lowered dose to heart, lungs, spleen, liver and kidneys. For IMPT, target coverage was adequate (after max 1 replanning) in 17/19 cases. In two cases target coverage remained insufficient. However, in one of these patients the summed dose was insufficient (due to tumor shrinkage) while weekly coverage was adequate. For the other patient the target coverage was also insufficient by VMAT, due to large anatomical changes during treatment. For VMAT, adequate target coverage was achieved in 18/19 cases without re-planning. However, for reasons of high OAR dose re-planning was required in two cases. CONCLUSION: IMPT reduces the dose to OARs significantly, while achieving adequate target coverage in the majority of patients. Re-planning was necessary for both IMPT and VMAT due to anatomical changes.


Assuntos
Neoplasias Esofágicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias Esofágicas/radioterapia , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Radiother Oncol ; 147: 178-185, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32380117

RESUMO

BACKGROUND AND PURPOSE: Non-small cell lung cancer (NSCLC) patients show typically large anatomical changes during treatment, making recalculation or adaption necessary. For report and review, the applied treatment dose can be accumulated on the reference planning CT using deformable image registration (DIR). We investigated the dosimetric impact of using six different clinically available DIR algorithms for dose accumulation in presence of inter-fractional anatomy variations. MATERIALS AND METHODS: For seven NSCLC patients, proton treatment plans with 66 Gy-RBE to the planning target volume (PTV) were optimised. Nine repeated CTs were registered to the planning CT using six DIR algorithms each. All CTs were acquired in visually guided deep-inspiration breath-hold. The plans were recalculated on the repeated CTs and warped back to the planning CT using the corresponding DIRs. Fraction doses warped with the same DIR were summed up to six different accumulated dose distributions per patient, and compared to the initial dose. RESULTS: The PTV-V95 of accumulated doses decreased by 16% on average over all patients, with variations due to DIR selection of 8.7%. A separation of the dose effects caused by anatomical changes and DIR uncertainty showed a good agreement between the dose degradation caused by anatomical changes and the dose predicted from the average of all DIRs (differences of only 1.6%). CONCLUSION: The dose degradation caused by anatomical changes was more pronounced than the uncertainty of employing different DIRs for dose accumulation, with averaged results from several DIRs providing a good representation of dose degradation caused by anatomy. However, accumulated dose variations between DIRs can be substantial, leading to an additional dose uncertainty.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
8.
Radiother Oncol ; 136: 185-189, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015123

RESUMO

Due to anticipated clinical benefits, moving targets are potential future indications for pencil beam scanned proton therapy (PBS-PT). However, currently they are not widely treated at PBS-PT facilities due to dosimetric uncertainties caused by motion. We developed a method, the 4D robustness evaluation method (4DREM), to realistically and efficiently assess all possible events impacting PBS-PT treatments in the thorax. Using the 4DREM in large cohorts of lung and oesophageal cancer patients, it will become possible to illustrate, in clinical practice, how to trigger robustness settings for plan optimisation and to select and apply motion mitigation techniques.


Assuntos
Neoplasias Esofágicas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Neoplasias Esofágicas/diagnóstico por imagem , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Radiother Oncol ; 138: 158-165, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302390

RESUMO

BACKGROUND AND PURPOSE: To evaluate the dosimetric sparing and robustness against inter-fraction anatomical changes between photon and proton dose distributions for children with abdominal tumors. MATERIAL AND METHODS: Volumetric modulated arc therapy (VMAT) and intensity-modulated pencil beam scanning (PBS) proton dose distributions were calculated for 20 abdominal pediatric cases (average 3, range 1-8 years). VMAT plans were based on a full-arc while PBS plans on 2-3 posterior-oblique irradiation fields. Plans were robustly optimized on a patient-specific internal target volume (ITV) using a uniform 5 mm set-up uncertainty. Additionally, for the PBS plans a ± 3% proton range uncertainty was accounted for. Fractional dose re-calculations were performed using the planning computed tomography (CT) deformably registered to the daily cone-beam CT (CBCT) images. Fractional doses were accumulated rigidly. Planned and CBCT accumulated VMAT and PBS dose distributions were compared using dose-volume histogram (DVH) parameters. RESULTS: Significant better sparing of the organs at risk with a maximum reduction in the mean dose of 40% was achieved with PBS. Mean ITV DVH parameters differences between planned and CBCT accumulated dose distributions were smaller than 0.5% for both VMAT and PBS. However, the ITV coverage (V95% > 99%) was not reached for one patient for the accumulated VMAT dose distribution. CONCLUSIONS: For pediatric patients with abdominal tumors, improved dosimetric sparing was obtained with PBS compared to VMAT. In addition, PBS delivered by posterior-oblique irradiation fields demonstrated to be robust against anatomical inter-fraction changes. Compared to PBS, daily anatomical changes proved to affect the target coverage of VMAT dose distributions to a higher extent.


Assuntos
Neoplasias Abdominais/radioterapia , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/patologia , Criança , Pré-Escolar , Tomografia Computadorizada de Feixe Cônico , Humanos , Lactente , Dosagem Radioterapêutica
10.
Radiother Oncol ; 128(1): 174-181, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29571904

RESUMO

PURPOSE: Respiratory impacts in pencil beam scanned proton therapy (PBS-PT) are accounted by extensive 4D dose calculations, where deformable image registration (DIR) is necessary for estimating deformation vector fields (DVFs). We aim here to evaluate the dosimetric errors induced by different DIR algorithms in their resulting 4D dose calculations by using ground truth(GT)-DVFs from 4DMRI. MATERIALS AND METHODS: Six DIR methods: ANACONDA, Morfeus, B-splines, Demons, CT Deformable, and Total Variation, were respectively applied to nine 4DCT-MRI liver data sets. The derived DVFs were then used as input for 4D dose calculation. The DIR induced dosimetric error was assessed by individually comparing the resultant 4D dose distributions to those obtained with GT-DVFs. Both single-/three-field plans and single/rescanned strategies were investigated. RESULTS: Differences in 4D dose distributions among different DIR algorithms, and compared to the results using GT-DVFs, were pronounced. Up to 40 % of clinically relevant dose calculation points showed dose differences of 10 % or more between the GT. Differences in V95(CTV) reached up to 11.34 ±â€¯12.57 %. The dosimetric errors became in general less substantial when applying multiple-field plans or using rescanning. CONCLUSION: Intrinsic geometric errors by DIR can influence the clinical evaluation of liver 4D PBS-PT plans. We recommend the use of an error bar for correctly interpreting individual 4D dose distributions.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Terapia com Prótons/métodos , Doses de Radiação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Radiother Oncol ; 124(2): 256-262, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28764926

RESUMO

PURPOSE: To develop and validate prediction models of overall survival (OS) for head and neck cancer (HNC) patients based on image biomarkers (IBMs) of the primary tumor and positive lymph nodes (Ln) in combination with clinical parameters. MATERIAL AND METHODS: The study cohort was composed of 289 nasopharyngeal cancer (NPC) patients from China and 298 HNC patients from the Netherlands. Multivariable Cox-regression analysis was performed to select clinical parameters from the NPC and HNC datasets, and IBMs from the NPC dataset. Final prediction models were based on both IBMs and clinical parameters. RESULTS: Multivariable Cox-regression analysis identified three independent IBMs (tumor Volume-density, Run Length Non-uniformity and Ln Major-axis-length). This IBM model showed a concordance(c)-index of 0.72 (95%CI: 0.65-0.79) for the NPC dataset, which performed reasonably with a c-index of 0.67 (95%CI: 0.62-0.72) in the external validation HNC dataset. When IBMs were added in clinical models, the c-index of the NPC and HNC datasets improved to 0.75 (95%CI: 0.68-0.82; p=0.019) and 0.75 (95%CI: 0.70-0.81; p<0.001), respectively. CONCLUSION: The addition of IBMs from the primary tumor and Ln improved the prognostic performance of the models containing clinical factors only. These combined models may improve pre-treatment individualized prediction of OS for HNC patients.


Assuntos
Carcinoma/diagnóstico , Carcinoma/mortalidade , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/mortalidade , Biomarcadores Tumorais/análise , Carcinoma/diagnóstico por imagem , Carcinoma/terapia , Cetuximab/uso terapêutico , Quimiorradioterapia , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/terapia , Estadiamento de Neoplasias , Países Baixos/epidemiologia , Prognóstico , Modelos de Riscos Proporcionais , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA