Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(1): 79-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34585637

RESUMO

Amending municipal solid waste incineration with carbon capture and storage (CCS) is a new approach that can reduce the climate change impacts of waste incineration. This study provides a detailed analysis of the consequences of amending the new Amager Bakke incinerator in Copenhagen (capacity: 600,000 tonnes waste per year) with CCS as a post-combustion technology. Emphasis is on the changes in the energy flows and outputs as well as the environmental performance of the plant; the latter is assessed by life cycle assessment. Amending Amager Bakke with CCS of the chosen configuration reduces the electricity output by 50% due to steam use by the capture unit, but introducing post-capture flue gas condensation increases the heat output utilized in the Copenhagen district heating system by 20%. Thus, the overall net energy efficiency is not affected. The CCS amendment reduces the fossil CO2 emissions to 40 kg CO2 per tonne of incinerated waste and stores 530 kg biogenic CO2 per tonne of incinerated waste. Potential developments in the composition of the residual waste incinerated or in the energy systems that Amager Bakke interacts with, do not question the benefits of the CCS amendment. In terms of climate change impacts, considering different waste composition and energy system scenarios, introducing CCS reduces in average the impact of Amager Bakke by 850 kg CO2-equivalents per tonne of incinerated waste. CCS increases the environmental impacts in other categories, but not in the same order of magnitude as the savings introduced within climate change.


Assuntos
Carbono , Incineração , Mudança Climática , Meio Ambiente , Resíduos Sólidos/análise
2.
Waste Manag Res ; 29(10 Suppl): 57-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21930520

RESUMO

Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six experiments including 'as-large-as-possible' changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely ranges of element transfer coefficients were provided as the basis for sensitivity analysis of life-cycle assessment (LCA) results involving waste incinerator technologies.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/métodos , Resíduos/análise , Poluentes Atmosféricos/química , Dinamarca , Incineração/métodos , Sensibilidade e Especificidade
3.
Waste Manag ; 128: 99-113, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975140

RESUMO

The effects of amending municipal solid waste incineration (MSWI) with carbon capture and storage (CCS) via MEA (Monoethanolamine) technology differ according to the air pollution control technologies and energy recovery systems. Electricity output reduces by one-third for power-only plants and halves for combined heat-and-power plants, while variations in heat recovery depend on the presence of flue gas condensation. MSWI with CCS can capture roughly 800 kg of compressed CO2 per tonne of waste treated. Life cycle assessment (LCA) modelling of MSWI, with and without CCS, illustrates that despite energy penalties, CCS lowers its climate change impact. The difference in climate change impacts as a result of CCS amendment depends on the energy system in which MSWI operates. In a near-future energy system, MSWI with CCS reduces climate change impacts by 700 kg CO2-eq/tonne wet waste compared to MSWI without CCS. The climate change saving of CCS became increasingly larger as the energy system became "greener"; the climate change saving ultimately approached the capture efficiency (85% of CO2 in the flue gas) multiplied by the carbon content of the waste converted to CO2. Sensitivity analysis showed that capture efficiency was the main factor affecting the overall results, with increasing importance in non-fossil fuel-based energy systems. Likely changes in residual waste composition, as source segregation and collection systems improve, had only minor effects on the environmental benefits of CCS. The effects of CCS amendments on 13 other impact categories were marginal compared to the effects of different MSWI configurations.


Assuntos
Carbono , Incineração , Centrais Elétricas , Resíduos Sólidos/análise , Tecnologia
4.
Waste Manag ; 29(4): 1251-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19062265

RESUMO

The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e.g., batteries) than the direct method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste like paper, cardboard and organic fractions. The single fraction contributing most to the total energy content is the non-recyclable plastic fraction, contributing 21% of the energy content and 60% of the chlorine content, although this fraction comprises less than 7% by weight. Heavy metals originate mainly from inert fractions, primarily batteries.


Assuntos
Metais Pesados/análise , Resíduos/análise , Dinamarca , Incineração
5.
Waste Manag ; 50: 364-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26946936

RESUMO

This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities.


Assuntos
Custos e Análise de Custo/métodos , Resíduos Sólidos/economia , Gerenciamento de Resíduos/métodos , Modelos Teóricos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/economia
6.
Waste Manag ; 30(7): 1244-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20378326

RESUMO

Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.


Assuntos
Poluição do Ar/prevenção & controle , Incineração/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Cidades , Eficiência , Incineração/estatística & dados numéricos , Centrais Elétricas
7.
Waste Manag Res ; 26(1): 96-103, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18338706

RESUMO

A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Incineração , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Técnicas de Apoio para a Decisão , Dinamarca , Meio Ambiente , Poluição Ambiental/prevenção & controle , Modelos Teóricos
8.
Waste Manag Res ; 25(3): 257-62, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17612326

RESUMO

Life-cycle assessment (LCA) models are becoming the principal decision support tools of waste management systems. This paper describes our experience with the use of EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies), a new computerized LCA-based model for integrated waste management. Our findings provide a quantitative understanding of waste management systems and may reveal consistent approaches to improve their environmental performances. EASEWASTE provides a versatile system modelling facility combined with a complete life-cycle impact assessment and in addition to the traditional impact categories addresses toxicity-related categories. New categories dealing with stored ecotoxicity and spoiled groundwater resources have been introduced. EASEWASTE has been applied in several studies, including full-scale assessments of waste management in Danish municipalities. These studies led to numerous modelling issues: the need of combining process-specific and input-specific emissions, the choice of a meaningful time horizon, the way of accounting for biological carbon emissions, the problem of stored ecotoxicity and aspects of crediting the waste management system with the savings inherent in avoided production of energy and materials. Interpretation of results showed that waste management systems can be designed in an environmentally sustainable manner where energy recovery processes lead to substantial avoidance of emissions and savings of resources.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Abastecimento de Água , Monitoramento Ambiental , Poluição Ambiental/prevenção & controle , Humanos , Modelos Teóricos , Medição de Risco
9.
Waste Manag Res ; 23(2): 126-32, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15864954

RESUMO

Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.


Assuntos
Incineração , Metais Pesados/análise , Eliminação de Resíduos , Dinamarca , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA