Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2218841120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399421

RESUMO

Heterogeneity is the norm in biology. The brain is no different: Neuronal cell types are myriad, reflected through their cellular morphology, type, excitability, connectivity motifs, and ion channel distributions. While this biophysical diversity enriches neural systems' dynamical repertoire, it remains challenging to reconcile with the robustness and persistence of brain function over time (resilience). To better understand the relationship between excitability heterogeneity (variability in excitability within a population of neurons) and resilience, we analyzed both analytically and numerically a nonlinear sparse neural network with balanced excitatory and inhibitory connections evolving over long time scales. Homogeneous networks demonstrated increases in excitability, and strong firing rate correlations-signs of instability-in response to a slowly varying modulatory fluctuation. Excitability heterogeneity tuned network stability in a context-dependent way by restraining responses to modulatory challenges and limiting firing rate correlations, while enriching dynamics during states of low modulatory drive. Excitability heterogeneity was found to implement a homeostatic control mechanism enhancing network resilience to changes in population size, connection probability, strength and variability of synaptic weights, by quenching the volatility (i.e., its susceptibility to critical transitions) of its dynamics. Together, these results highlight the fundamental role played by cell-to-cell heterogeneity in the robustness of brain function in the face of change.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Homeostase/fisiologia
2.
Cereb Cortex ; 31(2): 845-872, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068000

RESUMO

While our understanding of human neurons is often inferred from rodent data, inter-species differences between neurons can be captured by building cellular models specifically from human data. This includes understanding differences at the level of ion channels and their implications for human brain function. Thus, we here present a full spiking, biophysically detailed multi-compartment model of a human layer 5 (L5) cortical pyramidal cell. Model development was primarily based on morphological and electrophysiological data from the same human L5 neuron, avoiding confounds of experimental variability. Focus was placed on describing the behavior of the hyperpolarization-activated cation (h-) channel, given increasing interest in this channel due to its role in pacemaking and differentiating cell types. We ensured that the model exhibited post-inhibitory rebound spiking considering its relationship with the h-current, along with other general spiking characteristics. The model was validated against data not used in its development, which highlighted distinctly slower kinetics of the human h-current relative to the rodent setting. We linked the lack of subthreshold resonance observed in human L5 neurons to these human-specific h-current kinetics. This work shows that it is possible and necessary to build human-specific biophysical neuron models in order to understand human brain dynamics.


Assuntos
Córtex Cerebral/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Células Piramidais/fisiologia , Animais , Biofísica , Córtex Cerebral/citologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores , Humanos , Camundongos , Modelos Neurológicos , Modelos Teóricos , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes , Especificidade da Espécie
3.
PLoS Comput Biol ; 16(12): e1008485, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33338032

RESUMO

The increased democratization of the creation, implementation, and attendance of academic conferences has been a serendipitous benefit of the movement toward virtual meetings. The Coronavirus Disease 2019 (COVID-19) pandemic has accelerated the transition to online conferences and, in parallel, their democratization, by necessity. This manifests not just in the mitigation of barriers to attending traditional physical conferences but also in the presentation of new, and more importantly attainable, opportunities for young scientists to carve out a niche in the landscape of academic meetings. Here, we describe an early "proof of principle" of this democratizing power via our experience organizing the Canadian Computational Neuroscience Spotlight (CCNS; crowdcast.io/e/CCNS), a free 2-day virtual meeting that was built entirely amid the pandemic using only virtual tools. While our experience was unique considering the obstacles faced in creating a conference during a pandemic, this was not the only factor differentiating both our experience and the resulting meeting from other contemporary online conferences. Specifically, CCNS was crafted entirely by early career researchers (ECRs) without any sponsors or partners, advertised primarily using social media and "word of mouth," and designed specifically to highlight and engage trainees. From this experience, we have distilled "10 simple rules" as a blueprint for the design of new virtual academic meetings, especially in the absence of institutional support or partnerships, in this unprecedented environment. By highlighting the lessons learned in implementing our meeting under these arduous circumstances, we hope to encourage other young scientists to embrace this challenge, which would serve as a critical next step in further democratizing academic meetings.


Assuntos
Neurociências/educação , Neurociências/tendências , Mídias Sociais , Telecomunicações , Encéfalo/patologia , COVID-19 , Canadá , Biologia Computacional , Congressos como Assunto , Humanos , Cooperação Internacional , Internet , Oscilometria , Pandemias , Universidades
4.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37567768

RESUMO

Discerning the contribution of specific ionic currents to complex neuronal dynamics is a difficult, but important, task. This challenge is exacerbated in the human setting, although the widely characterized uniqueness of the human brain compared with preclinical models necessitates the direct study of human neurons. Neuronal spiking frequency preference is of particular interest given its role in rhythm generation and signal transmission in cortical circuits. Here, we combine the frequency-dependent gain (FDG), a measure of spiking frequency preference, and novel in silico analyses to dissect the contributions of individual ionic currents to the suprathreshold features of human layer 5 (L5) neurons captured by the FDG. We confirm that a contemporary model of such a neuron, primarily constrained to capture subthreshold activity driven by the hyperpolarization-activated cyclic nucleotide gated (h-) current, replicates key features of the in vitro FDG both with and without h-current activity. With the model confirmed as a viable approximation of the biophysical features of interest, we applied new analysis techniques to quantify the activity of each modeled ionic current in the moments before spiking, revealing unique dynamics of the h-current. These findings motivated patch-clamp recordings in analogous rodent neurons to characterize their FDG, which confirmed that a biophysically detailed model of these neurons captures key interspecies differences in the FDG. These differences are correlated with distinct contributions of the h-current to neuronal activity. Together, this interdisciplinary and multispecies study provides new insights directly relating the dynamics of the h-current to suprathreshold spiking frequency preference in human L5 neurons.


Assuntos
Fluordesoxiglucose F18 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Humanos , Células Piramidais/fisiologia , Neurônios/fisiologia , Cátions
5.
Front Synaptic Neurosci ; 15: 1250834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860223

RESUMO

Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".

6.
Cell Rep ; 39(8): 110863, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613586

RESUMO

A myriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit heterogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular heterogeneity, in part, renders neural circuits less resilient to seizure. By comparing patch clamp recordings from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we demonstrate significantly decreased biophysical heterogeneity in seizure-generating areas. Implemented computationally, this renders model neural circuits prone to sudden transitions into synchronous states with increased firing activity, paralleling ictogenesis. This computational work also explains the surprising finding of significantly decreased excitability in the population-activation functions of neurons from epileptogenic tissue. Finally, mathematical analyses reveal a bifurcation structure arising only with low heterogeneity and associated with seizure-like dynamics. Taken together, this work provides experimental, computational, and mathematical support for the theory that ictogenic dynamics accompany a reduction in biophysical heterogeneity.


Assuntos
Epilepsia , Neurônios , Humanos , Neurônios/fisiologia , Células Piramidais/fisiologia , Convulsões
8.
Front Neural Circuits ; 15: 643360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967702

RESUMO

Computational models of neural circuits with varying levels of biophysical detail have been generated in pursuit of an underlying mechanism explaining the ubiquitous hippocampal theta rhythm. However, within the theta rhythm are at least two types with distinct frequencies associated with different behavioral states, an aspect that must be considered in pursuit of these mechanistic explanations. Here, using our previously developed excitatory-inhibitory network models that generate theta rhythms, we investigate the robustness of theta generation to intrinsic neuronal variability by building a database of heterogeneous excitatory cells and implementing them in our microcircuit model. We specifically investigate the impact of three key "building block" features of the excitatory cell model that underlie our model design: these cells' rheobase, their capacity for post-inhibitory rebound, and their spike-frequency adaptation. We show that theta rhythms at various frequencies can arise dependent upon the combination of these building block features, and we find that the speed of these oscillations are dependent upon the excitatory cells' response to inhibitory drive, as encapsulated by their phase response curves. Taken together, these findings support a hypothesis for theta frequency control that includes two aspects: (i) an internal mechanism that stems from the building block features of excitatory cell dynamics; (ii) an external mechanism that we describe as "inhibition-based tuning" of excitatory cell firing. We propose that these mechanisms control theta rhythm frequencies and underlie their robustness.


Assuntos
Hipocampo , Ritmo Teta , Neurônios
9.
Nat Commun ; 12(1): 2497, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941783

RESUMO

In the human neocortex coherent interlaminar theta oscillations are driven by deep cortical layers, suggesting neurons in these layers exhibit distinct electrophysiological properties. To characterize this potential distinctiveness, we use in vitro whole-cell recordings from cortical layers 2 and 3 (L2&3), layer 3c (L3c) and layer 5 (L5) of the human cortex. Across all layers we observe notable heterogeneity, indicating human cortical pyramidal neurons are an electrophysiologically diverse population. L5 pyramidal cells are the most excitable of these neurons and exhibit the most prominent sag current (abolished by blockade of the hyperpolarization activated cation current, Ih). While subthreshold resonance is more common in L3c and L5, we rarely observe this resonance at frequencies greater than 2 Hz. However, the frequency dependent gain of L5 neurons reveals they are most adept at tracking both delta and theta frequency inputs, a unique feature that may indirectly be important for the generation of cortical theta oscillations.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neocórtex/fisiologia , Células Piramidais/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Adulto Jovem
10.
Sci Rep ; 10(1): 15408, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958802

RESUMO

An improved understanding of the mechanisms underlying neuromodulatory approaches to mitigate seizure onset is needed to identify clinical targets for the treatment of epilepsy. Using a Wilson-Cowan-motivated network of inhibitory and excitatory populations, we examined the role played by intrinsic and extrinsic stimuli on the network's predisposition to sudden transitions into oscillatory dynamics, similar to the transition to the seizure state. Our joint computational and mathematical analyses revealed that such stimuli, be they noisy or periodic in nature, exert a stabilizing influence on network responses, disrupting the development of such oscillations. Based on a combination of numerical simulations and mean-field analyses, our results suggest that high variance and/or high frequency stimulation waveforms can prevent multi-stability, a mathematical harbinger of sudden changes in network dynamics. By tuning the neurons' responses to input, stimuli stabilize network dynamics away from these transitions. Furthermore, our research shows that such stabilization of neural activity occurs through a selective recruitment of inhibitory cells, providing a theoretical undergird for the known key role these cells play in both the healthy and diseased brain. Taken together, these findings provide new vistas on neuromodulatory approaches to stabilize neural microcircuit activity.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Modelos Neurológicos , Modelos Teóricos , Redes Neurais de Computação
11.
Front Neural Circuits ; 13: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009908

RESUMO

Recent experimental literature has revealed that GABAergic interneurons exhibit increased activity prior to seizure onset, alongside additional evidence that such activity is synchronous and may arise abruptly. These findings have led some to hypothesize that this interneuronal activity may serve a causal role in driving the sudden change in brain activity that heralds seizure onset. However, the mechanisms predisposing an inhibitory network toward increased activity, specifically prior to ictogenesis, without a permanent change to inputs to the system remain unknown. We address this question by comparing simulated inhibitory networks containing control interneurons and networks containing hyperexcitable interneurons modeled to mimic treatment with 4-Aminopyridine (4-AP), an agent commonly used to model seizures in vivo and in vitro. Our in silico study demonstrates that model inhibitory networks with 4-AP interneurons are more prone than their control counterparts to exist in a bistable state in which asynchronously firing networks can abruptly transition into synchrony driven by a brief perturbation. This transition into synchrony brings about a corresponding increase in overall firing rate. We further show that perturbations driving this transition could arise in vivo from background excitatory synaptic activity in the cortex. Thus, we propose that bistability explains the increase in interneuron activity observed experimentally prior to seizure via a transition from incoherent to coherent dynamics. Moreover, bistability explains why inhibitory networks containing hyperexcitable interneurons are more vulnerable to this change in dynamics, and how such networks can undergo a transition without a permanent change in the drive. We note that while our comparisons are between networks of control and ictogenic neurons, the conclusions drawn specifically relate to the unusual dynamics that arise prior to seizure, and not seizure onset itself. However, providing a mechanistic explanation for this phenomenon specifically in a pro-ictogenic setting generates experimentally testable hypotheses regarding the role of inhibitory neurons in pre-ictal neural dynamics, and motivates further computational research into mechanisms underlying a newly hypothesized multi-step pathway to seizure initiated by inhibition.


Assuntos
Simulação por Computador , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Convulsões/fisiopatologia , Córtex Somatossensorial/fisiologia , Animais , Interneurônios/química , Camundongos , Camundongos Transgênicos , Rede Nervosa/química , Optogenética/métodos , Córtex Somatossensorial/química
12.
Front Neural Circuits ; 11: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326558

RESUMO

The interconnectivity between excitatory and inhibitory neural networks informs mechanisms by which rhythmic bursts of excitatory activity can be produced in the brain. One such mechanism, Pyramidal Interneuron Network Gamma (PING), relies primarily upon reciprocal connectivity between the excitatory and inhibitory networks, while also including intra-connectivity of inhibitory cells. The causal relationship between excitatory activity and the subsequent burst of inhibitory activity is of paramount importance to the mechanism and has been well studied. However, the role of the intra-connectivity of the inhibitory network, while important for PING, has not been studied in detail, as most analyses of PING simply assume that inhibitory intra-connectivity is strong enough to suppress subsequent firing following the initial inhibitory burst. In this paper we investigate the role that the strength of inhibitory intra-connectivity plays in determining the dynamics of PING-style networks. We show that networks with weak inhibitory intra-connectivity exhibit variations in burst dynamics of both the excitatory and inhibitory cells that are not obtained with strong inhibitory intra-connectivity. Networks with weak inhibitory intra-connectivity exhibit excitatory rhythmic bursts with weak excitatory-to-inhibitory synapses for which classical PING networks would show no rhythmic activity. Additionally, variations in dynamics of these networks as the excitatory-to-inhibitory synaptic weight increases illustrates the important role that consistent pattern formation in the inhibitory cells serves in maintaining organized and periodic excitatory bursts. Finally, motivated by these results and the known diversity of interneurons, we show that a PING-style network with two inhibitory subnetworks, one strongly intra-connected and one weakly intra-connected, exhibits organized and periodic excitatory activity over a larger parameter regime than networks with a homogeneous inhibitory population. Taken together, these results serve to better articulate the role of inhibitory intra-connectivity in generating PING-like rhythms, while also revealing how heterogeneity amongst inhibitory synapses might make such rhythms more robust to a variety of network parameters.


Assuntos
Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Hipocampo/citologia , Hipocampo/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Periodicidade , Sinapses/fisiologia
15.
Front Neural Circuits ; 10: 82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812323

RESUMO

The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics compared to those in networks of Type I or Type II neurons. To understand these results, we compute neuronal PRCs calculated with a perturbation matching the profile of the synaptic current in our networks. Differences in profiles of these PRCs across the different neuron types reveal mechanisms underlying the divergent network dynamics.


Assuntos
Interneurônios/fisiologia , Modelos Teóricos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA