RESUMO
INTRODUCTION: Nicotine and tobacco use remain high both globally and in the USA, contributing to large healthcare expenditures. With a rise in e-cigarette use, it is important to have clinically relevant models of inhaled nicotine exposure. This study aims to extend prior preclinical nicotine inhalation animal data to females and provide both behavior and serum pharmacokinetics. METHODS: We tested two inhalation doses of nicotine (24 mg/ml and 59 mg/ml) and compared these to injected doses (0.4 mg/kg and 1 mg/kg). In addition, we assessed locomotor behavior after the same doses. Blood was collected at 10- and 120-minutes post-administration. We assessed nicotine and cotinine serum concentrations by LC-MS/MS. RESULTS: showed that while nicotine serum concentrations for the respective high and low-dose administrations were similar between both routes of administration, the route had differential effects on locomotor behavior. Inhaled nicotine showed a dose-dependent decrease in locomotor activity while injected doses showed the opposite trend. CONCLUSIONS: Our results indicate that the route of administration is an important factor when establishing preclinical models of nicotine exposures. Given that the overall use of e-cigarettes in vulnerable populations is on the rise, our study provides important behavioral and pharmacokinetic information to advance our currently limited understanding of the effects of nicotine vapor exposure. IMPLICATIONS: This study highlights behavioral differences between different routes of administration of similar doses of nicotine. Using a low and high dose of nicotine, we found that nicotine serum concentrations were similar between the different routes of administration. Our results indicate that different routes of administration have opposing effects on locomotor activity. These findings provide important implications for future behavioral models.
RESUMO
There has been an increasing use of cannabis during pregnancy in recent years. Studies have indicated that THC exposure in utero may increase the risk of attention deficits and memory impairments in adolescence. The goal of the present study is to investigate the effects of vaporized THC exposure during pregnancy on offspring memory and attention performance in early and late adolescence. Pregnant dams were exposed to vaporized THC (10 mg or 40 mg) daily from gestational day 2 until labor. Pups were given either a standard or a high-fat diet at weaning and tested in early and late adolescence in two memory tests, the Novel Object Recognition (NOR) test and the Morris Water Maze (MWM) test, and a test of attention, the Object-Based Attention (OBA) test. Rats exposed to low-dose THC showed significantly decreased object exploration in both the NOR and OBA tests, indicating decreased attention. Object exploration time in OBA was significantly lower in females than males. Additionally, post hoc analysis of MWM tests showed some differences in learning patterns for HD THC offspring in early adolescence, possibly due to diet interaction, but ultimate performance was not impacted. While there are existing studies examining prenatal exposure to THC in rodents, this is the first to our knowledge examining memory and attention in adolescence following vaporized THC exposure in utero, and we find indications that prenatal THC exposure may lead to attention deficits and altered memory performance.
Assuntos
Atenção , Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Dronabinol/administração & dosagem , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Atenção/efeitos dos fármacos , Ratos , Relação Dose-Resposta a Droga , Memória/efeitos dos fármacos , Fatores Sexuais , Reconhecimento Psicológico/efeitos dos fármacos , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Aprendizagem em Labirinto/efeitos dos fármacosRESUMO
Rationale Clinical research has shown that prenatal exposure to nicotine may result in increased obesity risk later in life. Preclinical research has corroborated this finding, but few studies have investigated inhaled nicotine or the interaction with diet on obesity risk. Objective The aim of this study was to investigate the effects of prenatal nicotine exposure on both direct and indirect obesity measures, with both sex and diet as factors. Methods Pregnant rats were exposed to either vehicle or nicotine vapor (24 mg/mL or 59 mg/mL) throughout the entire gestational period. Offspring from each treatment group were given either a normal diet or a high fat diet starting at postnatal day 22. Caloric intake, body weight, spontaneous locomotion, sleep/wake activity, and voluntary exercise were measured throughout adolescence. Pregnancy weight gain and pup birthweights were collected to further measure developmental effects of prenatal nicotine exposure. Results Both maternal weight gain during pregnancy and pup weight at birth were decreased with prenatal nicotine exposure. Early adolescent males showed increased spontaneous activity in the open field following prenatal nicotine exposure compared to vehicle counterparts, particularly those given high-fat diet. Additionally, high dose nicotine prenatal treated males ran significantly less distance on the running wheel in late adolescence compared to vehicle counterparts, in the normal diet group only. Conclusion The results presented here show decreased birthweight, hyperactivity, and decreased voluntary exercise in adolescence following prenatal nicotine exposure in dose, sex, and diet dependent manners, which could lead to increased obesity risk in adulthood.
Assuntos
Peso ao Nascer , Dieta Hiperlipídica , Locomoção , Nicotina , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Nicotina/administração & dosagem , Nicotina/farmacologia , Gravidez , Masculino , Ratos , Dieta Hiperlipídica/efeitos adversos , Peso ao Nascer/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Fatores Sexuais , Ratos Sprague-Dawley , Obesidade , Relação Dose-Resposta a Droga , Peso Corporal/efeitos dos fármacosRESUMO
AIMS: Preclinical studies have found that chronic ∆9-tetrahydrocannabinol (THC) treatment is directly associated with weight gain when introduced during adolescence and adulthood, but the effect of prenatal THC is unclear. Clinical studies have demonstrated prenatal exposure to THC is a prospective predictor of increased health risks associated with obesity. Our study aims to examine prenatal THC impact on obesity risks in males and females throughout adolescence using a clinically relevant inhalation model. METHODS: Pregnant rats were exposed to one of the following from gestational day 2 through birth: 10 mg THC, 40 mg THC, or air. Daily 10-min inhalations were conducted in each animal from 0900 to 1200. Offspring from each treatment group were given either a high-fat diet (HFD) or a normal diet (ND). Food and bodyweights were collected daily, while circadian activity, locomotion, and exercise were measured periodically (PND 21-60). Pregnancy weight gain and birth weight were collected to determine early-life developmental effects. RESULTS: Rats prenatally treated with low-dose THC (LDTHC) generally had lower dark-cycle activity compared with control counterparts, but this altered activity was not observed at the higher dose of THC (HDTHC). In terms of open-field activity, THC doses displayed a general increase in locomotion. In addition, the LDTHC male rats in the ND showed significantly greater exploratory behavior. Prenatal THC had dose-dependent effects on maternal weight gain and birth weight. CONCLUSIONS: Overall, our findings indicate there are some activity-related and developmental effects of prenatal THC, which may be related to obesity risks later in life.
Assuntos
Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Peso ao Nascer , Dronabinol/farmacologia , Dieta , Obesidade/etiologia , LocomoçãoRESUMO
Epidermal/brain fatty acid-binding protein 5 (FABP5) plays an integral role in the intracellular trafficking of bioactive lipids/endocannabinoids and the subsequent initiation of cellular cascades affecting cannabinoid and dopamine (DA) systems. Social isolation (SI) and environmental enrichment (EE) during adolescence have been shown to impact DA signaling, and, specifically, DA transporter (DAT) and receptor levels of DA type 1 (D1) and 2 (D2); however, the relationship between FABP5, environment and DA signaling remains unclear. The present study quantified DAT and DA receptor levels in male/female FABP5-/- and FABP5+/+ mice raised in either SI or EE. Results showed that FABP5-/- mice had 6.09-8.81% greater D1 levels in striatal sub-regions of the caudal brain, independent of sex or environment. D1 levels were 8.03% greater only in the olfactory tubercle of enrichment-reared animals. In summary, these results supported that FABP5 plays an important function in regulating striatal DA signaling, and this may have important implications as a target with therapeutic potential for various psychiatric disorders.
RESUMO
Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.