Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 74(1): 18-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987087

RESUMO

ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.


Assuntos
Neoplasias , Receptor ErbB-4 , Transdução de Sinais , Humanos , Neoplasias/genética , Receptor ErbB-4/genética
2.
Semin Cell Dev Biol ; 28: 49-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24631357

RESUMO

Epiregulin is a 46-amino acid protein that belongs to the epidermal growth factor (EGF) family of peptide hormones. Epiregulin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 (HER4) and can stimulate signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Epiregulin possesses a range of functions in both normal physiologic states as well as in pathologic conditions. Epiregulin contributes to inflammation, wound healing, tissue repair, and oocyte maturation by regulating angiogenesis and vascular remodeling and by stimulating cell proliferation. Deregulated epiregulin activity appears to contribute to the progression of a number of different malignancies, including cancers of the bladder, stomach, colon, breast, lung, head and neck, and liver. Therefore, epiregulin and the elements of the EGF/ErbB signaling network that lie downstream of epiregulin appear to be good targets for therapeutic intervention.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Epirregulina/metabolismo , Receptores ErbB/metabolismo , Neoplasias/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos , Transdução de Sinais/fisiologia
3.
Protein Expr Purif ; 125: 26-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26363121

RESUMO

Overexpression of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu) results in ligand independent activation of kinase signaling and is found in about 30% of human breast cancers, and is correlated with a more aggressive tumor phenotype. The HER2 extracellular domain (ECD) consists of four domains - I, II, III and IV. Although the role of each domain in the dimerization and activation of the receptor has been extensively studied, the role of domain IV (DIV) is not clearly understood yet. In our previous studies, we reported peptidomimetic molecules inhibit HER2:HER3 heterodimerization. In order to study the binding interactions of peptidomimetics with HER2 DIV in detail, properly folded recombinant HER2 protein in pure form is important. We have expressed and purified HER2 ECD and DIV proteins in the Drosophila melanogaster Schneider2 (S2) cell line. Using the commercial Drosophila expression system (DES), we transfected S2 cells with plasmids designed to direct the expression of secreted recombinant HER2 ECD and DIV proteins. The secreted proteins were purified from the conditioned medium by filtration, ultrafiltration, dialysis and nickel affinity chromatography techniques. The purified HER2 proteins were then analyzed using Western blot, mass spectrometry and circular dichroism (CD) spectroscopy.


Assuntos
Receptor ErbB-2 , Animais , Linhagem Celular , Cromatografia de Afinidade , Drosophila melanogaster , Feminino , Humanos , Mapeamento de Peptídeos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Oncol Res ; 20(7): 303-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23879171

RESUMO

Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-alpha, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-alpha in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-alpha increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-alpha increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-alpha on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-alpha were somewhat interchangeable in their effects on EGFR signaling; however, TGF-alpha had a greater effect in vitro and AREG had a greater effect in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores ErbB/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , Fator de Crescimento Transformador alfa/metabolismo , Anfirregulina , Animais , Comunicação Autócrina/fisiologia , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Família de Proteínas EGF , Feminino , Técnicas de Silenciamento de Genes , Humanos , Ligantes , Camundongos , Camundongos Nus , Neoplasia de Células Basais/imunologia , Neoplasia de Células Basais/metabolismo , Neoplasia de Células Basais/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Biochem J ; 443(1): 133-44, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22216880

RESUMO

The ErbB4 receptor tyrosine kinase possesses both tumour suppressor and oncogenic activities. Thus pharmacological agents are needed to help elucidate ErbB4 functions. However, limitations of existing ErbB4 agonists and antagonists have led us to seek novel ErbB4 antagonists. The Q43L mutant of the ErbB4 agonist NRG2ß (neuregulin 2ß) stimulates ErbB4 tyrosine phosphorylation, yet fails to stimulate ErbB4 coupling to cell proliferation. Thus in the present paper we hypothesize that NRG2ß/Q43L may be an ErbB4 antagonist. NRG2ß/Q43L competitively antagonizes agonist stimulation of ErbB4 coupling to cell proliferation. NRG2ß/Q43L stimulates less ErbB4 tyrosine phosphorylation than does NRG2ß. In addition, NRG2ß stimulation of cell proliferation requires PI3K (phosphoinositide 3-kinase) activity and NRG2ß stimulates greater Akt phosphorylation than does NRG2ß/Q43L. Moreover, EGFR [EGF (epidermal growth factor) receptor] kinase activity (but not that of ErbB4) is critical for coupling ErbB4 to proliferation. Experiments utilizing ErbB4 splicing isoforms and mutants suggest that NRG2ß and NRG2ß/Q43L may differentially stimulate ErbB4 coupling to the transcriptional co-regulator YAP (Yes-associated protein). Finally, NRG2ß/Q43L competitively antagonizes agonist stimulation of EGFR and ErbB2/ErbB3, indicating that NRG2ß/Q43L is a pan-ErbB antagonist. Thus we postulate that NRG2ß/Q43L and other antagonistic ligands stimulate ErbB tyrosine phosphorylation on a set of residues distinct from that stimulated by agonists, thus suggesting a novel mechanism of ErbB receptor regulation. Moreover, NRG2ß/Q43L and related ligand-based antagonists establish a paradigm for the discovery of anti-ErbB therapeutics.


Assuntos
Receptores ErbB/antagonistas & inibidores , Mutação de Sentido Incorreto , Fatores de Crescimento Neural/genética , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor ErbB-4 , Transdução de Sinais
6.
Semin Cell Dev Biol ; 21(9): 951-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20813200

RESUMO

The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/fisiopatologia , Feminino , Humanos
7.
Growth Factors ; 30(2): 107-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22260327

RESUMO

Epidermal growth factor (EGF) family peptides are ligands for the EGF receptor (EGFR). Here, we elucidate functional differences among EGFR ligands and mechanisms underlying these distinctions. In 32D/EGFR myeloid and MCF10A breast cells, soluble amphiregulin (AR), transforming growth factor alpha (TGFα), neuregulin 2 beta, and epigen stimulate greater EGFR coupling to cell proliferation and DNA synthesis than do EGF, betacellulin, heparin-binding EGF-like growth factor, and epiregulin. EGF competitively antagonizes AR, indicating that its functional differences reflect dissimilar intrinsic activity at EGFR. EGF stimulates much greater phosphorylation of EGFR Tyr1045 than does AR. Moreover, the EGFR Y1045F mutation and z-cbl dominant-negative mutant of the c-cbl ubiquitin ligase potentiate the effect of EGF but not of AR. Both EGF and AR stimulate phosphorylation of EGFR Tyr992. However, the EGFR Y992F mutation and phospholipase C gamma inhibitor U73122 reduce the effect of AR much more than that of EGF. Expression of TGFα in 32D/EGFR cells causes greater EGFR coupling to cell proliferation than does expression of EGF. Moreover, expression of EGF in 32D/EGFR cells causes these cells to be largely refractory to stimulation with soluble EGF. Thus, EGFR ligands are functionally distinct in models of paracrine and autocrine signaling and EGFR coupling to biological responses may be specified by competition among functionally distinct EGFR ligands.


Assuntos
Comunicação Autócrina/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Comunicação Parácrina/fisiologia , Animais , Linhagem Celular , Humanos , Ligantes , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tirosina/metabolismo
8.
Exp Cell Res ; 317(4): 392-404, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21110957

RESUMO

Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1ß. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.


Assuntos
Receptores ErbB/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/análise , Receptores ErbB/genética , Humanos , Ligantes , Neuregulina-1/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Receptor ErbB-3/análise , Receptor ErbB-3/metabolismo , Receptor ErbB-4
9.
Odontology ; 100(2): 109-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684584

RESUMO

The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.


Assuntos
Neoplasias Ósseas/secundário , Receptores ErbB/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Transdução de Sinais/fisiologia , Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Osteólise/etiologia , Proteína Relacionada ao Hormônio Paratireóideo/genética
10.
Hum Mol Genet ; 18(23): 4478-91, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19700499

RESUMO

The Lowe syndrome (LS) is a life-threatening, developmental disease characterized by mental retardation, cataracts and renal failure. Although this human illness has been linked to defective function of the phosphatidylinositol 5-phosphatase, Ocrl1 (Oculo-Cerebro-Renal syndrome of Lowe protein 1), the mechanism by which this enzyme deficiency triggers the disease is not clear. Ocrl1 is known to localize mainly to the Golgi apparatus and endosomes, however it translocates to plasma membrane ruffles upon cell stimulation with growth factors. The functional implications of this inducible translocation to the plasma membrane are presently unknown. Here we show that Ocrl1 is required for proper cell migration, spreading and fluid-phase uptake in both established cell lines and human dermal fibroblasts. We found that primary fibroblasts from two patients diagnosed with LS displayed defects in these cellular processes. Importantly, these abnormalities were suppressed by expressing wild-type Ocrl1 but not by a phosphatase-deficient mutant. Interestingly, the homologous human PI-5-phosphatase, Inpp5b, was unable to complement the Ocrl1-dependent cell migration defect. Further, Ocrl1 variants that cannot bind the endocytic adaptor AP2 or clathrin, like Inpp5b, were less apt to rescue the migration phenotype. However, no defect in membrane recruitment of AP2/clathrin or in transferrin endocytosis by patient cells was detected. Collectively, our results suggest that Ocrl1, but not Inpp5b, is involved in ruffle-mediated membrane remodeling. Our results provide new elements for understanding how Ocrl1 deficiency leads to the abnormalities associated with the LS.


Assuntos
Movimento Celular , Fibroblastos/fisiologia , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/fisiopatologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fibroblastos/enzimologia , Teste de Complementação Genética , Humanos , Camundongos , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética
11.
Cytometry A ; 79(3): 227-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22045642

RESUMO

The wound healing assay is a commonly used technique to measure cell motility and migration. Traditional methods of performing the wound healing assay suffer from low throughput and a lack of quantitative data analysis. We have developed a new method to perform a high-throughput wound healing assay that produces quantitative data using the LEAP™ instrument. The LEAP™ instrument is used to create reproducible wounds in each well of a 96-well plate by laser ablation. The LEAP™ then records bright field images of each well at several time points. A custom texture segmentation algorithm is used to determine the wound area of each well at each time point. This texture segmentation analysis can provide faster and more accurate image analysis than traditional methods. Experimental results show that reproducible wounds are created by laser ablation with a wound area that varies by less than 10%. This method was tested by confirming that neuregulin-2ß increases the rate of wound healing by MCF7 cells in a dose dependent manner. This automated wound healing assay has greatly improved the speed and accuracy, making it a suitable high-throughput method for drug screening.


Assuntos
Movimento Celular , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Cicatrização/fisiologia , Algoritmos , Bioensaio , Neoplasias da Mama , Linhagem Celular Tumoral , Técnicas de Laboratório Clínico , Diagnóstico por Imagem/métodos , Feminino , Humanos , Neurregulinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 105(34): 12480-4, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18711136

RESUMO

The clinical efficacy of selective kinase inhibitors suggests that some cancer cells may become dependent on a single oncogene for survival. RNAi has been increasingly used to understand such "oncogene addiction" and validate new therapeutic targets. However, RNAi approaches suffer from significant off-target effects that limit their utility. Here, we combine carefully titrated lentiviral-mediated short hairpin RNA knockdown of the epidermal growth factor receptor (EGFR) with heterologous reconstitution by EGFR mutants to rigorously analyze the structural features and signaling activities that determine addiction to the mutationally activated EGFR in human lung cancer cells. EGFR dependence is differentially rescued by distinct EGFR variants and oncogenic mutants, is critically dependent on its heterodimerization partner ErbB-3, and surprisingly, does not require autophosphorylation sites in the cytoplasmic domain. Quantitative "oncogene rescue" analysis allows mechanistic dissection of oncogene addiction, and, when broadly applied, may provide functional validation for potential therapeutic targets identified through large-scale RNAi screens.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/genética , Modelos Biológicos , Oncogenes/fisiologia , Interferência de RNA , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patologia , Mutação , Oncogenes/genética , RNA Interferente Pequeno/farmacologia , Receptor ErbB-3
13.
Front Pharmacol ; 11: 574667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363463

RESUMO

Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.

14.
Breast Cancer Res Treat ; 114(2): 263-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18409071

RESUMO

Seven fulvestrant resistant cell lines derived from the estrogen receptor alpha positive MCF-7 human breast cancer cell line were used to investigate the importance of epidermal growth factor receptor (ErbB1-4) signaling. We found an increase in mRNA expression of EGFR and the ErbB3/ErbB4 ligand heregulin2 (hrg2) and a decrease of ErbB4 in all resistant cell lines. Western analyses confirmed the upregulation of EGFR and hrg2 and the downregulation of ErbB4. Elevated activation of EGFR and ErbB3 was seen in all resistant cell lines and the ErbB3 activation occurred by an autocrine mechanism. ErbB4 activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant cell lines concomitant with inhibition of Erk and unaltered Akt activation. In concert, inhibition of Erk with U0126 preferentially reduced growth of resistant cell lines. Treatment with ErbB3 neutralizing antibodies inhibited ErbB3 activation and resulted in a modest but statistically significant growth inhibition of two resistant cell lines. These data indicate that ligand activated ErbB3 and EGFR, and Erk signaling play important roles in fulvestrant resistant cell growth. Furthermore, the decreased level of ErbB4 in resistant cells may facilitate heterodimerization of ErbB3 with EGFR and ErbB2. Our data support that a concerted action against EGFR, ErbB2 and ErbB3 may be required to obtain complete growth suppression of fulvestrant resistant cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Estradiol/análogos & derivados , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptor ErbB-3/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Receptores ErbB/genética , Estradiol/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Fulvestranto , Humanos , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-3/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas
15.
Cancer Res ; 67(15): 7319-26, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671201

RESUMO

Activating mutations in the epidermal growth factor receptor (EGFR) characterize a subset of non-small cell lung cancers (NSCLC) with extraordinary sensitivity to targeted tyrosine kinase inhibitors (TKI). A single secondary EGFR mutation, T790M, arising in cis with the primary activating mutation, confers acquired resistance to these drugs. However, the T790M mutation is also detected in the absence of drug selection, suggesting that it may provide a growth advantage. We show here that although T790M alone has only a modest effect on EGFR function, when combined with the characteristic activating mutations L858R or del746-750, it results in a dramatic enhancement of EGFR activity. The double mutants show potent ligand-independent receptor autophosphorylation associated with altered cellular phenotypes, soft agar colony formation, and tumorigenesis in nude mice. The significant gain-of-function properties of these double mutants may explain their initial presence before drug selection and their rapid selection as the single drug resistance mutation during therapy with gefitinib/erlotinib, and suggests that they may contribute to the adverse clinical course of TKI-resistant NSCLC.


Assuntos
Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Mutação Puntual/genética , Inibidores de Proteínas Quinases/uso terapêutico , Alelos , Animais , Ensaio de Unidades Formadoras de Colônias , Análise Mutacional de DNA , Camundongos , Camundongos Nus , Células NIH 3T3 , Fenótipo , Fosforilação , Retroviridae/genética
16.
Biochem Biophys Res Commun ; 364(2): 351-7, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17945187

RESUMO

The EGF family hormone NRG2beta potently stimulates ErbB4 tyrosine phosphorylation and coupling to IL3 independence. In contrast, the NRG2alpha splicing isoform has lower affinity for ErbB4, does not potently stimulate ErbB4 phosphorylation, and fails to stimulate ErbB4 coupling. Here we investigate these differences. The NRG2beta Q43L mutant potently stimulates ErbB4 phosphorylation but not ErbB4 coupling to IL3 independence. This failure to stimulate ErbB4 coupling is not due to differential ligand purity, glycosylation, or stability. The NRG2alpha K45F mutant potently stimulates ErbB4 phosphorylation but not ErbB4 coupling to IL3 independence. Thus, this failure to stimulate ErbB4 coupling is not due to inadequate affinity for ErbB4. In contrast, the NRG2alpha L43Q/K45F mutant stimulates ErbB4 coupling, even though it does not have greater affinity for ErbB4 than does NRG2alpha/K45F. Collectively, these data indicate that Gln43 of NRG2beta is both necessary and sufficient for NRG2 stimulation of ErbB4 coupling to IL3 independence.


Assuntos
Receptores ErbB/metabolismo , Interleucina-3/metabolismo , Fatores de Crescimento Neural/metabolismo , Processamento de Proteína , Sequência de Aminoácidos , Linhagem Celular , Receptores ErbB/agonistas , Glicina/genética , Glicina/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor ErbB-4 , Proteínas Recombinantes/farmacologia , Tirosina/metabolismo
17.
Biochem J ; 396(1): 79-88, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16445385

RESUMO

The EGFR (epidermal growth factor receptor; ErbB1) is frequently the subject of genetic changes in human tumours which contribute to the malignant phenotype by altering EGFR signalling. Examples of such genetic changes include overexpression, extracellular domain deletions and point mutations, and small deletions in the tyrosine kinase domain. We hypothesized that a point mutation in one of the EGFR ligand-binding domains would increase the affinity of EGFR for NRG2beta (neuregulin-2beta), which is not a potent stimulus of signalling by EGFR-Wt (wild-type EGFR). This mutation would permit NRG2beta stimulation of EGFR signalling in settings in which NRG2beta does not normally do so. To test this hypothesis, we have generated and evaluated various EGFR alleles containing mutations at Val441 and Ser442. NRG2beta is a much more potent stimulus of the EGFR-S442F mutant than of EGFR-Wt. Furthermore, the affinity of NRG2beta for the EGFR-S442F mutant is greater than the affinity of NRG2beta for EGFR-Wt. Finally, the EGFR-S442F mutant constitutively suppresses apoptosis via phosphoinositide 3-kinase and Akt signalling but is not highly tyrosine phosphorylated in the absence of ligand. These results suggest that mutations in the EGFR ligand-binding domain in tumours may permit potent stimulation of EGFR signalling by ligands that are not normally potent EGFR agonists, thereby providing for a novel mechanism by which EGFR signalling may be deregulated. These results also suggest that novel EGFR mutations and signalling activities may be responsible for deregulated EGFR signalling in tumour cells.


Assuntos
Receptores ErbB/agonistas , Neurregulinas/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sítios de Ligação , Linhagem Celular , Cromonas/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/fisiologia , Genes erbB-1 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Morfolinas/farmacologia , Mutação de Sentido Incorreto , Células Mieloides , Neurregulinas/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/fisiologia , Quinazolinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
18.
Oncol Res ; 16(4): 179-93, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17120616

RESUMO

In many studies, ErbB4 expression in breast tumor samples correlates with a favorable patient prognosis. Similarly, ErbB4 signaling is coupled to cellular differentiation and growth arrest in a variety of model systems. However, in some studies, ErbB4 expression in breast tumor samples correlates with poor outcome. Likewise, studies using some human mammary tumor cell lines suggest that ErbB4 is coupled to malignant phenotypes. Thus, the roles that ErbB4 plays in human breast cancer are still poorly defined. Here we demonstrate that a constitutively active ErbB4 mutant (ErbB4-Q646C) inhibits colony formation on plastic by two human mammary tumor cell lines (SKBR3 and MCF7) and by the MCF10A immortalized human mammary cell line, but does not inhibit colony formation by the MDA-MB-453 and T47D human mammary tumor cell lines. ErbB4 kinase activity is necessary for ErbB4 function and phosphorylation of ErbB4 Tyr1056 is necessary and appears to be sufficient for ErbB4 function. The inhibition of colony formation by MCF10A cells is accompanied by growth arrest but not cell death. These data suggest that ErbB4 behaves as a mammary tumor suppressor and that loss of ErbB4 coupling to growth arrest may be an important event in mammary tumorigenesis.


Assuntos
Neoplasias da Mama/enzimologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutação , Células-Tronco Neoplásicas/enzimologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Terapia Genética/métodos , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Fosforilação , Receptor ErbB-4 , Retroviridae/genética , Transdução de Sinais , Proteínas Supressoras de Tumor , Tirosina/metabolismo
19.
Oncogene ; 23(4): 883-93, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14661053

RESUMO

The neuregulins (NRGs) are members of the epidermal growth factor (EGF) family of peptide growth factors. These hormones are agonists for the ErbB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4. We recently observed that the EGF family hormone NRG2beta is a potent agonist for ErbB4. In contrast, NRG2alpha, a splicing isoform of the same gene that encodes NRG2beta, is a poor ErbB4 agonist. We hypothesized that carboxyl-terminal residues of NRG2beta are critical for stimulation of ErbB4 tyrosine phosphorylation and coupling to downstream signaling events. Here, we demonstrate that the substitution of a lysine residue for Phe45 in NRG2beta results in reduced ligand potency. We also demonstrate that substitution of a phenylalanine for Lys45 in NRG2alpha results in increased ligand potency. Finally, analyses of the gain-of-function NRG2alpha Chg5 mutant demonstrate that Gln43, Met47, Asn49, and Phe50 regulate ligand efficacy. Thus, these data indicate that carboxyl-terminal residues of NRG2beta are critical for activation of ErbB4 signaling. Moreover, these NRG2alpha and NRG2beta mutants reveal new insights into models for ligand-induced ErbB family receptor tyrosine phosphorylation and coupling to downstream signaling events.


Assuntos
Receptores ErbB/fisiologia , Fatores de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Dimerização , Dados de Sequência Molecular , Fatores de Crescimento Neural/química , Receptor ErbB-4
20.
Oncogene ; 21(55): 8442-52, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12466964

RESUMO

During the last decade, several novel members of the Epidermal Growth Factor family of peptide growth factors have been identified. Most prominent among these are the Neuregulins or Heregulins. To date, four different Neuregulin genes have been identified (Neuregulin1-4) and several different splicing isoforms have been identified for at least two of these genes (Neuregulin1 and Neuregulin2). While Neuregulin1 isoforms have been extensively studied, comparatively little is known about Neuregulin3, Neuregulin4, or the Neuregulin2 isoforms. Indeed, there has been no systematic comparison of the activities of these molecules. Here we demonstrate that Neuregulin2alpha and Neuregulin2beta stimulate ErbB3 tyrosine phosphorylation and coupling to biological responses. In contrast, Neuregulin3 and Neuregulin4 fail to activate ErbB3 signaling. Furthermore, Neuregulin2beta, but not Neuregulin2alpha, stimulates ErbB4 tyrosine phosphorylation and coupling to biological responses. Finally, both Neuregulin3 and Neuregulin4 stimulate modest amounts of ErbB4 tyrosine phosphorylation. However, whereas Neuregulin3 stimulates a modest amount of ErbB4 coupling to biological responses, Neuregulin4 fails to stimulate ErbB4 coupling to biological responses. This suggests that there are qualitative as well as quantitative differences in ErbB family receptor activation by Neuregulin isoforms.


Assuntos
Receptores ErbB/genética , Regulação da Expressão Gênica , Genes erbB , Neurregulinas/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Primers do DNA , Drosophila melanogaster , Regulação da Expressão Gênica/fisiologia , Neurregulinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ratos , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA