Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629822

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Assuntos
Endocanabinoides , Obesidade , Masculino , Animais , Camundongos , Endocanabinoides/metabolismo , Rimonabanto/farmacologia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Fenótipo , Sacarose/farmacologia , Camundongos Endogâmicos C57BL
2.
Eur J Nutr ; 60(6): 3143-3157, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543364

RESUMO

PURPOSE: The effect of manipulating the fatty acid profile of the diet over generations could affect the susceptibility to develop obesity and metabolic disorders. Although some acute effects were described, the impact of transgenerational continuous supplementation with omega 3 fatty acids on metabolic homeostasis and skeletal muscle metabolic flexibility during a nutritional stress is unknown. METHODS: We analyzed the effect of an obesogenic diet in mice after transgenerational supplementation with an omega-3 rich oil (mainly EPA) or a control oil. Young F3 animals received a high fat and high sucrose diet for 4 months. Whole-body biometric data were recorded and lipidomic/transcriptomic adaptations were explored in the skeletal muscle. RESULTS: F3 mice from the lineage supplemented with EPA gained less weight, fat mass, and exhibited better metabolic parameters after the obesogenic diet compared to mice from the control lineage. Transcriptomic exploration of skeletal muscle showed differential regulation of biological processes such as fibrosis, fatty acid catabolism, and inflammation between lineages. These adaptations were associated to subtle lipid remodeling of cellular membranes with an enrichment in phospholipids with omega 3 fatty acid in mice from the EPA lineage. CONCLUSION: Transgenerational and continuous intake of EPA could help to reduce cardiovascular and metabolic risks related to an unbalanced diet by the modulation of insulin sensitivity, fatty acid metabolism, and fibrosis in skeletal muscle.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético
3.
Int J Mol Sci ; 19(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223577

RESUMO

The cross-talk between skeletal muscle and adipose tissue is involved in the development of insulin resistance (IR) in skeletal muscle, leading to the decrease in the anabolic effect of insulin. We investigated if the long chain polyunsaturated n-3 fatty acids (LCn-3PUFA), eicosapentaenoic and docosapentaenoic acids (EPA and DPA, respectively) could (1) regulate the development of IR in 3T3-L1 adipocytes and C2C12 muscle cells and (2) inhibit IR in muscle cells exposed to conditioned media (CM) from insulin-resistant adipocytes. Chronic insulin (CI) treatment of adipocytes and palmitic acid (PAL) exposure of myotubes were used to induce IR in the presence, or not, of LCn-3PUFA. EPA (50 µM) and DPA (10 µM) improved PAL-induced IR in myotubes, but had only a partial effect in adipocytes. CM from adipocytes exposed to CI induced IR in C2C12 myotubes. Although DPA increased the mRNA levels of genes involved in fatty acid (FA) beta-oxidation and insulin signaling in adipocytes, it was not sufficient to reduce the secretion of inflammatory cytokines and prevent the induction of IR in myotubes exposed to adipocyte's CM. Treatment with DPA was able to increase the release of adiponectin by adipocytes into CM. In conclusion, DPA is able to protect myotubes from PAL-induced IR, but not from IR induced by CM from adipocytes.


Assuntos
Adipócitos/metabolismo , Comunicação Celular , Ácidos Graxos/metabolismo , Resistência à Insulina , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ácidos Graxos/farmacologia , Expressão Gênica , Insulina/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Biochim Biophys Acta ; 1861(1): 12-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477381

RESUMO

Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 µM of PAL without or with 50 µM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL ß-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial ß-oxidation.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Mioblastos Esqueléticos/efeitos dos fármacos , Palmitatos/toxicidade , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina , Isoenzimas/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Mioblastos Esqueléticos/metabolismo , Fosforilação , Proteína Quinase C/fisiologia , Proteína Quinase C-theta
5.
J Lipid Res ; 57(8): 1382-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307576

RESUMO

The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain.


Assuntos
Tecido Adiposo Branco/patologia , Fármacos Antiobesidade/farmacologia , Dieta Ocidental/efeitos adversos , Ácido Eicosapentaenoico/farmacologia , Obesidade/metabolismo , Células 3T3-L1 , Adipogenia , Adipocinas/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/metabolismo , Expressão Gênica , Intolerância à Glucose , Resistência à Insulina , Leptina/genética , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Fosfolipídeos/metabolismo
6.
Cardiovasc Diabetol ; 13: 54, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572210

RESUMO

BACKGROUND: Saturated fatty acid-rich high fat (HF) diets trigger abdominal adiposity, insulin resistance, type 2 diabetes and cardiac dysfunction. This study was aimed at evaluating the effects of nascent obesity on the cardiac function of animals fed a high-fat diet and at analyzing the mechanisms by which these alterations occurred at the level of coronary reserve. MATERIALS AND METHODS: Rats were fed a control (C) or a HF diet containing high proportions of saturated fatty acids for 3 months. Thereafter, their cardiac function was evaluated in vivo using a pressure probe inserted into the cavity of the left ventricle. Their heart was isolated, perfused iso-volumetrically according to the Langendorff mode and the coronary reserve was evaluated by determining the endothelial-dependent (EDV) and endothelial-independent (EIV) vasodilatations in the absence and presence of endothelial nitric oxide synthase and cyclooxygenase inhibitors (L-NAME and indomethacin). The fatty acid composition of cardiac phospholipids was then evaluated. RESULTS: Although all the HF-fed rats increased their abdominal adiposity, some of them did not gain body weight (HF- group) compared to the C group whereas other ones had a higher body weight (HF+). All HF rats displayed a higher in vivo cardiac activity associated with an increased EDV. In the HF- group, the improved EDV was due to an increase in the endothelial cell vasodilatation activity whereas in the HF+ group, the enhanced EDV resulted from an improved sensitivity of coronary smooth muscle cells to nitric oxide. Furthermore, in the HF- group the main pathway implicated in the EDV was the NOS pathway while in the HF+ group the COX pathway. CONCLUSIONS: Nascent obesity-induced improvement of cardiac function may be supported by an enhanced coronary reserve occurring via different mechanisms. These mechanisms implicate either the endothelial cells activity or the smooth muscle cells sensitivity depending on the body adiposity of the animals.


Assuntos
Adiposidade/fisiologia , Vasos Coronários/fisiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Vasodilatação/fisiologia , Animais , Vasos Coronários/citologia , Masculino , Obesidade/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
7.
J Physiol Biochem ; 80(2): 287-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38175500

RESUMO

Previous studies in Western diet (WD)-fed male rats have highlighted a link between the stimulation of cardiac contractility, mitochondrial adaptations and a pro-inflammatory fatty acid profile of phospholipids in the heart. Our objectives were to determine (1) if WD-fed female Wistar rats and obese humans display a similar pro-inflammatory profile in their cardiac phospholipids and (2) if this lipid profile is associated with deleterious effects on the heart of the female rodents. Female Wistar rats were fed WD for 5 weeks or a laboratory chow as a control. Ionic homeostasis, redox status, inflammation markers, and fatty acid composition of phospholipids were analysed in the heart. WD increased the abdominal fat mass without modifying the body weight of female rats. As previously found in males, a WD induced a shift in membrane fatty acid composition toward a pro-inflammatory profile in the female rats, but not in obese humans. It was associated with an increased COX2 expression suggesting an increased pro-inflammatory eicosanoid production. Signs of increased intracellular calcium strongly supported a stimulation of cardiac contractility without any induction of apoptosis. The heart of WD-fed rats exhibited a hypoxic state as a higher HIF1-α expression was reported. The expressions of antioxidant enzymes were increased, but the redox reserves against reactive oxygen species were lowered. In conclusion, as previously observed in males, we suppose that cardiac abnormalities are magnified with severe obesity in female rats, leading to hypoxia and intense oxidative stress which could ultimately induce cell death and heart failure.


Assuntos
Dieta Ocidental , Hipóxia , Contração Miocárdica , Ratos Wistar , Animais , Feminino , Dieta Ocidental/efeitos adversos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos , Ciclo-Oxigenase 2/metabolismo , Estresse Oxidativo , Fosfolipídeos/metabolismo , Obesidade/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Modelos Animais de Doenças , Masculino , Humanos
8.
Cardiovasc Diabetol ; 12: 49, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23530768

RESUMO

BACKGROUND: There has been accumulating evidence associating diabetes mellitus and cardiovascular dysfunctions. However, most of the studies are focused on the late stages of diabetes and on the function of large arteries. This study aimed at characterizing the effects of the early phase of diabetes mellitus on the cardiac and vascular function with focus on the intact coronary microvasculature and the oxidative stress involved. MATERIALS AND METHODS: Zucker diabetic fatty rats and their lean littermates fed with standard diet A04 (Safe) were studied at the 11th week of age. Biochemical parameters such as glucose, insulin and triglycerides levels as well as their oxidative stress status were measured. Their hearts were perfused ex vivo according to Langendorff and their cardiac activity and coronary microvascular reactivity were evaluated. RESULTS: Zucker fatty rats already exhibited a diabetic state at this age as demonstrated by the elevated levels of plasma glucose, insulin, glycated hemoglobin and triglycerides. The ex vivo perfusion of their hearts revealed a decreased cardiac mechanical function and coronary flow. This was accompanied by an increase in the overall oxidative stress of the organs. However, estimation of the active form of endothelial nitric oxide synthase and coronary reactivity indicated a preserved function of the coronary microvessels at this phase of the disease. Diabetes affected also the cardiac membrane phospholipid fatty acid composition by increasing the arachidonic acid and n-3 polyunsaturated fatty acids levels. CONCLUSIONS: The presence of diabetes, even at its beginning, significantly increased the overall oxidative stress of the organs resulting to decreased cardiac mechanical activity ex vivo. However, adaptations were adopted at this early phase of the disease regarding the preserved coronary microvascular reactivity and the associated cardiac phospholipid composition in order to provide a certain protection to the heart.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Endotélio Vascular/fisiologia , Coração/fisiologia , Microvasos/fisiologia , Estresse Oxidativo/fisiologia , Vasodilatação/fisiologia , Animais , Circulação Coronária/fisiologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Zucker , Fatores de Tempo
9.
Life Sci ; 327: 121826, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270172

RESUMO

AIMS: Rheumatoid arthritis is an autoimmune disease which induces chronic inflammation and increases the risk for sarcopenia and metabolic abnormalities. Nutritional strategies using omega 3 polyunsaturated fatty acids could be proposed to alleviate inflammation and improve the maintenance of lean mass. Independently, pharmacological agents targeting key molecular regulators of the pathology such as TNF alpha could be proposed, but multiple therapies are frequently necessary increasing the risk for toxicity and adverse effects. The aim of the present study was to explore if the combination of an anti-TNF therapy (Etanercept) with dietary supplementation with omega 3 PUFA could prevent pain and metabolic effects of RA. MATERIALS AND METHODS: RA was induced using collagen-induced arthritis (CIA) in rats to explore of supplementation with docosahexaenoic acid, treatment with etanercept or their association could alleviate symptoms of RA (pain, dysmobility), sarcopenia and metabolic alterations. KEY FINDINGS: We observed that Etanercept had major benefits on pain and RA scoring index. However, DHA could reduce the impact on body composition and metabolic alterations. SIGNIFICANCE: This study revealed for the first time that nutritional supplementation with omega 3 fatty acid could reduce some symptoms of rheumatoid arthritis and be an effective preventive treatment in patients who do not need pharmacological therapy, but no sign of synergy with an anti-TNF agent was observed.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ácidos Graxos Ômega-3 , Sarcopenia , Ratos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação , Dor/tratamento farmacológico
10.
J Physiol Biochem ; 79(2): 441-450, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36961725

RESUMO

Alterations in adipose tissue (AT) metabolism related to inflammation and adipokine's production lead to perturbations in its capacity to store lipids and release fatty acids (FA) during feeding/fasting transition or during exercise. Exercise has a beneficial effect on AT metabolism, but conventional trainings are not always suitable for patients with functional limitations. Dynamic eccentric (ECC) exercise prevents the accumulation of AT and may then overcome those limitations. Consequently, this study aimed at investigating AT's adaptations after ECC training. Nine-week-old male rats were randomly assigned to a control sedentary or three-trained groups for which treadmill slopes modulated exercise oxygen consumption (VO2) and mechanical work (n = 15 per group): (1) + 15% uphill-concentric group (CONC), (2) - 15% downhill group (ECC15, same mechanical work as CONC) and (3) - 30% downhill group (ECC30, same VO2, or oxygen cost as CONC). Body composition and energy expenditure (EE) were measured before and after 8 weeks of training. Subcutaneous AT was collected to study total FA profile and gene expression. Higher total EE was driven by lean mass gain in trained animals. In AT, there was a decrease in arachidonic acid with CONC or ECC15 training. Increased adiponectin, leptin, lipases, Glut4 and Igf1 mRNA levels in ECC15 group suggested major metabolic adaption in AT. In conclusion, ECC could induce beneficial modifications in AT fatty acid profile and the expression of key genes related to metabolism and insulin sensitivity.


Assuntos
Tecido Adiposo , Condicionamento Físico Animal , Masculino , Ratos , Animais , Tecido Adiposo/metabolismo , Consumo de Oxigênio , Metabolismo Energético , Biologia , Músculo Esquelético/metabolismo
11.
Br J Nutr ; 107(9): 1254-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21914239

RESUMO

Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation. The present study aimed to investigate the dose-response effects of LC n-3 PUFA on the production of peroxidised metabolites, as potential bioactive molecules, and on global gene expression in liver. Hypercholesterolaemic rabbits received by daily oral administration (7 weeks) either oleic acid-rich oil or a mixture of oils providing 0.1, 0.5 or 1 % (groups 1, 2 and 3 respectively) of energy as DHA. Levels of specific peroxidised metabolites, namely 4-hydroxyhexenal (4-HHE)-protein adducts, issued from LC n-3 PUFA were measured by GC/MS/MS in liver in parallel to transcription profiling. The intake of LC n-3 PUFA increased, in a dose-dependent manner, the hepatic production of 4-HHE. At the highest dose, LC n-3 PUFA provoked an accumulation of TAG in liver, which can be directly linked to increased mRNA levels of lipoprotein hepatic receptors (LDL-receptor and VLDL-receptor). In groups 1 and 2, the mRNA levels of microsomal TAG transfer protein decreased, suggesting a possible new mechanism to reduce VLDL secretion. These modulations of genes related to lipoprotein metabolism were independent of PPARα signalling but were probably linked to the activation of the farnesol X receptor pathway by LC n-3 PUFA and/or their metabolites such as HHE.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Regulação da Expressão Gênica , Peroxidação de Lipídeos , Fígado/metabolismo , Administração Oral , Aldeídos/metabolismo , Animais , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos , Microssomos Hepáticos/metabolismo , Coelhos , Receptores Citoplasmáticos e Nucleares/metabolismo , Espectrometria de Massas em Tandem
12.
J Physiol Biochem ; 78(2): 501-516, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34292519

RESUMO

The purpose of this study was to determine whether magnesium L-lactate is responsible for having a beneficial effect on the myocardium and the skeletal muscles and how this substrate acts at the molecular level. Twenty seven young male Wistar rats were supplied with a magnesium L-lactate (L) solution, a magnesium chloride (M) solution and/or water (W) as a vehicle for 10 weeks. The treated animals absorbed the L and M solutions as they wished since they also had free access to water. After 9 weeks of treatment, in vivo cardiac function was determined ultrasonically. The animals were sacrificed at the end of the tenth week of treatment and the heart was perfused according to the Langendorff method by using a technique allowing the determination of cardiomyocyte activity (same coronary flow in the two groups). Blood was collected and skeletal muscles of the hind legs were weighed. The myocardial expressions of the sodium/proton exchange 1 (NHE1) and sodium/calcium exchange 1 (NCX1), intracellular calcium accumulation, myocardial magnesium content, as well as systemic and tissue oxidative stress, were determined. Animals of the L group absorbed systematically a low dose of L-lactate (31.5 ± 4.3 µg/100 g of body weight/day) which was approximately four times higher than that ingested in the W group through the diet supplied. Ex vivo cardiomyocyte contractility and the mass of some skeletal muscles (tibialis anterior) were increased by the L treatment. Myocardial calcium was decreased, as was evidenced by an increase in total CaMKII expression, without any change in the ratio between phosphorylated CaMKII and total CaMKII. Cardiac magnesium tended to be elevated. Our results suggest that the increased intracellular magnesium concentration was related to L-lactate-induced cytosolic acidosis and to the activation of the NHE1/NCX1 axis. Interestingly, systemic oxidative stress was reduced by the L treatment whereas the lipid profile of the animals was unaltered. Taken together, these results suggest that a chronic low-dose L-lactate intake has a beneficial health effect on some skeletal muscles and the myocardium through the activation of the NHE1/NCX1 axis, a decrease in cellular calcium and an increase in cellular magnesium. The treatment can be beneficial for the health of young rodents in relation to chronic oxidative stress-related diseases.


Assuntos
Cálcio , Magnésio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lactatos/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Água
13.
Am J Clin Nutr ; 115(3): 694-704, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791007

RESUMO

BACKGROUND: The effects of a dietary supplementation with the vegetable ω-3 α-linolenic acid (ALA) on cardiovascular homeostasis are unclear. In this context, it would be interesting to assess the effects of camelina oil. OBJECTIVE: This study aimed to assess the cardiovascular and metabolic effects of camelina oil in hypertensive patients with metabolic syndrome. METHODS: In a double-blind, placebo-controlled randomized study, treated essential hypertensive patients with metabolic syndrome received, during 6 mo, either cyclodextrin-complexed camelina oil containing ≈ 1.5 g ALA/d (n = 40) or an isocaloric placebo (n = 41), consisting of the same quantity of cyclodextrins and wheat starch. Anthropometric data, plasma lipids, glycemia, insulinemia, creatininemia, TBARs, high-sensitivity C-reactive protein, and n-3, n-6, and n-9 fatty acids in erythrocyte membranes were measured. Peripheral and central blood pressures, arterial stiffness, carotid intima-media thickness, and brachial artery endothelium-dependent flow-mediated dilatation (FMD) and endothelium-independent dilatation were assessed. RESULTS: Compared with placebo, camelina oil increased ALA (mean ± SD: 0 ± 0.04 compared with 0.08 ± 0.06%, P <0.001), its elongation product EPA (0 ± 0.5 compared with 0.16 ± 0.65%, P <0.05), and the n-9 gondoic acid (GA; 0 ± 0.04 compared with 0.08 ± 0.04%, P <0.001). No between-group difference was observed for cardiovascular parameters. However, changes in FMD were associated with the magnitude of changes in EPA (r = 0.26, P = 0.03). Compared with placebo, camelina oil increased fasting glycemia (-0.2 ± 0.6 compared with 0.3 ± 0.5 mmol/L, P <0.001) and HOMA-IR index (-0.8 ± 2.5 compared with 0.5 ± 0.9, P <0.01), without affecting plasma lipids, or inflammatory and oxidative stress markers. Changes in HOMA-IR index were correlated with the magnitude of changes in GA (r = 0.32, P <0.01). Nutritional intake remained similar between groups. CONCLUSION: ALA supplementation with camelina oil did not improve vascular function but adversely affected glucose metabolism in hypertensive patients with metabolic syndrome. Whether this adverse effect on insulin sensitivity is related to GA enrichment, remains to be elucidated.


Assuntos
Ácidos Graxos Ômega-3 , Hipertensão , Síndrome Metabólica , Espessura Intima-Media Carotídea , Método Duplo-Cego , Ácidos Graxos Ômega-3/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico
14.
Metabolites ; 11(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34940596

RESUMO

Obesity is characterized by profound alterations in adipose tissue (AT) biology, leading to whole body metabolic disturbances such as insulin resistance and cardiovascular diseases. These alterations are related to the development of a local inflammation, fibrosis, hypertrophy of adipocytes, and dysregulation in energy homeostasis, notably in visceral adipose tissue (VAT). Omega 3 (n-3) fatty acids (FA) have been described to possess beneficial effects against obesity-related disorders, including in the AT; however, the long-term effect across generations remains unknown. The current study was conducted to identify if supplementation with n-3 polyunsaturated FA (PUFA) for three generations could protect from the consequences of an obesogenic diet in VAT. Young mice from the third generation of a lineage receiving a daily supplementation (1% of the diet) with fish oil rich in eicosapentaenoic acid (EPA) or an isocaloric amount of sunflower oil, were fed a high-fat, high-sugar content diet for 4 months. We explore the transcriptomic adaptations in each lineage using DNA microarray in VAT and bioinformatic exploration of biological regulations using online databases. Transgenerational intake of EPA led to a reduced activation of inflammatory processes, perturbation in metabolic homeostasis, cholesterol metabolism, and mitochondrial functions in response to the obesogenic diet as compared to control mice from a control lineage. This suggests that the continuous intake of long chain n-3 PUFA could be preventive in situations of oversupply of energy-dense, nutrient-poor foods.

15.
Front Physiol ; 12: 749049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111075

RESUMO

The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.

16.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365668

RESUMO

It has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology.

17.
Nutrients ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348802

RESUMO

Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting-feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular-biochemical mechanistic links.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Expressão Gênica/efeitos dos fármacos , Síndrome Metabólica/sangue , MicroRNAs/sangue , MicroRNAs/efeitos dos fármacos , Animais , Dieta Hiperlipídica/métodos , Suplementos Nutricionais , Modelos Animais de Doenças , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Clin Nutr ; 39(5): 1497-1509, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279616

RESUMO

BACKGROUND & AIMS: Metabolic syndrome (MetS) induces major disturbances in plasma metabolome, reflecting abnormalities of several metabolic pathways. Recent evidences have demonstrated that the consumption of dairy products may protect from MetS, but the mechanisms remains unknown. The present study aimed at identify how the consumption of different types of dairy products could modify the changes in plasma metabolome during MetS. METHODS: In this observational study, we analyzed how the consumption of dairy products could modify the perturbations in the plasma metabolome induced by MetS in a sample of 298 participants (61 with MetS) from the French MONA LISA survey. Metabolomic profiling was analyzed with UPLC-MS/MS. RESULTS: Subjects with MetS exhibited major changes in plasma metabolome. Significant differences in plasma levels of branched chain amino acids, gamma-glutamyl amino acids, and metabolites from arginine and proline metabolism were observed between healthy control and Mets subjects. Plasma levels of many lipid species were increased with MetS (mono- and diacylglycerols, eicosanoids, lysophospholipids and lysoplasmalogens), with corresponding decreases in short chain fatty acids and plasmalogens. The consumption of dairy products, notably with a low fat content (milk and fresh dairy products), altered metabolite profiles in plasma from MetS subjects. Specifically, increasing consumption of dairy products promoted accumulation of plasma C15:0 fatty acid and was inversely associated to some circulating lysophospholipids, sphingolipids, gamma-glutamyl amino acids, leukotriene B4 and lysoplasmalogens. CONCLUSIONS: the consumption of low fat dairy products could mitigate some of the variations induced by MetS.


Assuntos
Laticínios/efeitos adversos , Dieta/efeitos adversos , Síndrome Metabólica/induzido quimicamente , Metabolômica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Antioxidants (Basel) ; 8(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690052

RESUMO

: Diabetes is characterized by a high mortality rate which is often associated with heart failure. Green tea and eicosapentaenoic acid (EPA) are known to lessen some of the harmful impacts of diabetes and to exert cardio-protection. The aim of the study was to determine the effects of EPA, green tea extract (GTE), and a combination of both on the cardiac consequences of diabetes mellitus, induced in Wistar rats by injection of a low dose of streptozotocin (33 mg/kg) combined with a high fat diet. Cardiac mechanical function, coronary reactivity, and parameters of oxidative stress, inflammation, and energy metabolism were evaluated. In the context of diabetes, GTE alone limited several diabetes-related symptoms such as inflammation. It also slightly improved coronary reactivity and considerably enhanced lipid metabolism. EPA alone caused the rapid death of the animals, but this effect was negated by the addition of GTE in the diet. EPA and GTE combined enhanced coronary reactivity considerably more than GTE alone. In a context of significant oxidative stress such as during diabetes mellitus, EPA enrichment constitutes a risk factor for animal survival. It is essential to associate it with the antioxidants contained in GTE in order to decrease mortality rate and preserve cardiac function.

20.
Oxid Med Cell Longev ; 2019: 9710352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534623

RESUMO

Sepsis still causes death, often through cardiac failure and mitochondrial dysfunction. Dietary ω3 polyunsaturated fatty acids are known to protect against cardiac dysfunction and sepsis lethality. This study set out to determine whether early low-severity sepsis alters the cardiac mitochondrial function in animals fed a Western-type diet and whether dietary eicosapentaenoic acid (EPA) administration protects the myocardium against the deleterious effects of sepsis and if so to seek possible mechanisms for its effects. Rats were divided into two groups fed either an ω3 PUFA-deficient diet ("Western diet," DEF group) or an EPA-enriched diet (EPA group) for 5 weeks. Each group was subdivided into two subgroups: sham-operated rats and rats subjected to cecal ligation and puncture (CLP). In vivo cardiac mechanical function was examined, and mitochondria were harvested to determine their functional activity. Oxidative stress was evaluated together with several factors involved in the regulation of reactive oxygen species metabolism. Sepsis had little effect on cardiac mechanical function but strongly depressed mitochondrial function in the DEF group. Conversely, dietary EPA greatly protected the mitochondria through a decreased oxidative stress of the mitochondrial matrix. The latter was probably due to an increased uncoupling protein-3 expression, already seen in the sham-operated animals. CLP rats in the EPA group also displayed increased mitochondrial sirtuin-3 protein expression that could reinforce the upholding of oxidative phosphorylation. Dietary EPA preconditioned the heart against septic damage through several modifications that protect mitochondrial integrity. This preconditioning can explain the cardioprotective effect of dietary EPA during sepsis.


Assuntos
Antioxidantes/uso terapêutico , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos Ômega-3/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Sepse/tratamento farmacológico , Sirtuína 3/metabolismo , Proteína Desacopladora 3/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Feminino , Mitocôndrias , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Wistar , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA