Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Oncol ; 16(9): 1913-1930, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35075772

RESUMO

In addition to mutations, epigenetic alterations are important contributors to malignant transformation and tumor progression. The aim of this work was to identify epigenetic events in which promoter or gene body DNA methylation induces gene expression changes that drive melanocyte malignant transformation and metastasis. We previously developed a linear mouse model of melanoma progression consisting of spontaneously immortalized melanocytes, premalignant melanocytes, a nonmetastatic tumorigenic, and a metastatic cell line. Here, through the integrative analysis of methylome and transcriptome data, we identified the relationship between promoter and/or gene body DNA methylation alterations and gene expression in early, intermediate, and late stages of melanoma progression. We identified adenylate cyclase type 3 (Adcy3) and inositol polyphosphate 4-phosphatase type II (Inpp4b), which affect tumor growth and metastatic potential, respectively. Importantly, the gene expression and DNA methylation profiles found in this murine model of melanoma progression were correlated with available clinical data from large population-based primary melanoma cohorts, revealing potential prognostic markers.


Assuntos
Metilação de DNA , Melanoma , Animais , Transformação Celular Neoplásica/genética , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Camundongos , Fenótipo , Prognóstico
2.
Neoplasia ; 23(4): 439-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845354

RESUMO

Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.


Assuntos
Plasticidade Celular/genética , Progressão da Doença , Melanoma/genética , Melanoma/patologia , Transcriptoma/genética , Animais , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanócitos/patologia , Camundongos , Metástase Neoplásica/genética , Fenótipo , Prognóstico , RNA Mensageiro/genética , Análise de Sequência de RNA
3.
Mol Oncol ; 13(6): 1433-1449, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31069961

RESUMO

The high mortality rate of melanoma is broadly associated with its metastatic potential. Tumor cell dissemination is strictly dependent on vascularization; therefore, angiogenesis and lymphangiogenesis play an essential role in metastasis. Hence, a better understanding of the players of tumor vascularization and establishing them as new molecular biomarkers might help to overcome the poor prognosis of melanoma patients. Here, we further characterized a linear murine model of melanoma progression and showed that the aggressiveness of melanoma cells is closely associated with high expression of angiogenic factors, such as Vegfc, Angpt2, and Six1, and that blockade of the vascular endothelial growth factor pathway by the inhibitor axitinib abrogates their tumorigenic potential in vitro and in the in vivo chicken chorioallantoic membrane assay. Furthermore, analysis of The Cancer Genome Atlas data revealed that the expression of the angiogenic factor ANGPT2 (P-value = 0.044) and the lymphangiogenic receptor VEGFR-3 (P-value = 0.002) were independent prognostic factors of overall survival in melanoma patients. Enhanced reduced representation bisulfite sequencing-based methylome profiling revealed for the first time a link between abnormal VEGFC, ANGPT2, and SIX1 gene expression and promoter hypomethylation in melanoma cells. In patients, VEGFC (P-value = 0.031), ANGPT2 (P-value < 0.001), and SIX1 (P-value = 0.009) promoter hypomethylation were independent prognostic factors of shorter overall survival. Hence, our data suggest that these angio- and lymphangiogenesis factors are potential biomarkers of melanoma prognosis. Moreover, these findings strongly support the applicability of our melanoma progression model to unravel new biomarkers for this aggressive human disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfangiogênese/genética , Melanoma/genética , Regiões Promotoras Genéticas/genética , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Membrana Corioalantoide/metabolismo , Metilação de DNA/genética , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Neovascularização Patológica/genética , Prognóstico , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA