Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virology ; 585: 179-185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356253

RESUMO

With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Febre Amarela , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Febre Amarela/tratamento farmacológico , Linhagem Celular , Vírus da Febre Amarela , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215765

RESUMO

The COVID-19 pandemic continues to threaten healthcare systems worldwide due to the limited access to vaccines, suboptimal treatment options, and the continuous emergence of new and more transmissible SARS-CoV-2 variants. Reverse-genetics studies of viral genes and mutations have proven highly valuable in advancing basic virus research, leading to the development of therapeutics. We developed a functional and highly versatile full-length SARS-CoV-2 infectious system by cloning the sequence of a COVID-19 associated virus isolate (DK-AHH1) into a bacterial artificial chromosome (BAC). Viruses recovered after RNA-transfection of in vitro transcripts into Vero E6 cells showed growth kinetics and remdesivir susceptibility similar to the DK-AHH1 virus isolate. Insertion of reporter genes, green fluorescent protein, and nanoluciferase into the ORF7 genomic region led to high levels of reporter activity, which facilitated high throughput treatment experiments. We found that putative coronavirus remdesivir resistance-associated substitutions F480L and V570L-and naturally found polymorphisms A97V, P323L, and N491S, all in nsp12-did not decrease SARS-CoV-2 susceptibility to remdesivir. A nanoluciferase reporter clone with deletion of spike (S), envelope (E), and membrane (M) proteins exhibited high levels of transient replication, was inhibited by remdesivir, and therefore could function as an efficient non-infectious subgenomic replicon system. The developed SARS-CoV-2 reverse-genetics systems, including recombinants to modify infectious viruses and non-infectious subgenomic replicons with autonomous genomic RNA replication, will permit high-throughput cell culture studies-providing fundamental understanding of basic biology of this coronavirus. We have proven the utility of the systems in rapidly introducing mutations in nsp12 and studying their effect on the efficacy of remdesivir, which is used worldwide for the treatment of COVID-19. Our system provides a platform to effectively test the antiviral activity of drugs and the phenotype of SARS-CoV-2 mutants.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Genética Reversa/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/genética , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Humanos , Polimorfismo Genético , Replicon/efeitos dos fármacos , Replicon/genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA