Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioinformatics ; 37(4): 464-472, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926128

RESUMO

MOTIVATION: Recent advances in high-throughput RNA-Seq technologies allow to produce massive datasets. When a study focuses only on a handful of genes, most reads are not relevant and degrade the performance of the tools used to analyze the data. Removing irrelevant reads from the input dataset leads to improved efficiency without compromising the results of the study. RESULTS: We introduce a novel computational problem, called gene assignment and we propose an efficient alignment-free approach to solve it. Given an RNA-Seq sample and a panel of genes, a gene assignment consists in extracting from the sample, the reads that most probably were sequenced from those genes. The problem becomes more complicated when the sample exhibits evidence of novel alternative splicing events. We implemented our approach in a tool called Shark and assessed its effectiveness in speeding up differential splicing analysis pipelines. This evaluation shows that Shark is able to significantly improve the performance of RNA-Seq analysis tools without having any impact on the final results. AVAILABILITY AND IMPLEMENTATION: The tool is distributed as a stand-alone module and the software is freely available at https://github.com/AlgoLab/shark. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Tubarões , Processamento Alternativo , Animais , RNA-Seq , Análise de Sequência de RNA , Tubarões/genética , Software
2.
Nat Comput ; 21(1): 81-108, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969737

RESUMO

Computational pangenomics is an emerging research field that is changing the way computer scientists are facing challenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and data structures were essential in the development of a plethora of software tools for the analysis of the human genome. These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000 Genomes Project. A major contribution of the 1000 Genomes Project is the characterization of a broad spectrum of genetic variations in the human genome, including the discovery of novel variations in the South Asian, African and European populations-thus enhancing the catalogue of variability within the reference genome. Currently, the need to take into account the high variability in population genomes as well as the specificity of an individual genome in a personalized approach to medicine is rapidly pushing the abandonment of the traditional paradigm of using a single reference genome. A graph-based representation of multiple genomes, or a graph pangenome, is replacing the linear reference genome. This means completely rethinking well-established procedures to analyze, store, and access information from genome representations. Properly addressing these challenges is crucial to face the computational tasks of ambitious healthcare projects aiming to characterize human diversity by sequencing 1M individuals (Stark et al. 2019). This tutorial aims to introduce readers to the most recent advances in the theory of data structures for the representation of graph pangenomes. We discuss efficient representations of haplotypes and the variability of genotypes in graph pangenomes, and highlight applications in solving computational problems in human and microbial (viral) pangenomes.

3.
PLoS Genet ; 12(3): e1005931, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26978032

RESUMO

Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.


Assuntos
Autofagia/genética , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , AMP Cíclico/genética , Neoplasias/genética , Animais , Anoikis/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Estresse do Retículo Endoplasmático , Glucose/deficiência , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Camundongos , Neoplasias/metabolismo , Inanição , Transcriptoma
4.
BMC Bioinformatics ; 19(1): 444, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458725

RESUMO

BACKGROUND: While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph. RESULTS: We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced alignments of each read in input, and (2) a list of novel events with respect to the gene annotation. CONCLUSIONS: An experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative splicing events even when genes in an experiment express at most one isoform. Compared with other tools which use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph. AVAILABILITY: Source code, documentation, and data are available for download at http://asgal.algolab.eu .


Assuntos
Processamento Alternativo/genética , Splicing de RNA/genética , RNA/genética , Análise de Sequência de RNA/métodos , Humanos
5.
Nucleic Acids Res ; 39(Database issue): D80-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051348

RESUMO

Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256,939 protein variants from 17,191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/.


Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Proteínas/química , Proteínas/genética , Éxons , Variação Genética , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA Mensageiro/química , Análise de Sequência de Proteína , Interface Usuário-Computador
6.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678869

RESUMO

In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.

7.
BMC Bioinformatics ; 13 Suppl 5: S2, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22537006

RESUMO

BACKGROUND: A challenging issue in designing computational methods for predicting the gene structure into exons and introns from a cluster of transcript (EST, mRNA) sequences, is guaranteeing accuracy as well as efficiency in time and space, when large clusters of more than 20,000 ESTs and genes longer than 1 Mb are processed. Traditionally, the problem has been faced by combining different tools, not specifically designed for this task. RESULTS: We propose a fast method based on ad hoc procedures for solving the problem. Our method combines two ideas: a novel algorithm of proved small time complexity for computing spliced alignments of a transcript against a genome, and an efficient algorithm that exploits the inherent redundancy of information in a cluster of transcripts to select, among all possible factorizations of EST sequences, those allowing to infer splice site junctions that are largely confirmed by the input data. The EST alignment procedure is based on the construction of maximal embeddings, that are sequences obtained from paths of a graph structure, called embedding graph, whose vertices are the maximal pairings of a genomic sequence T and an EST P. The procedure runs in time linear in the length of P and T and in the size of the output.The method was implemented into the PIntron package. PIntron requires as input a genomic sequence or region and a set of EST and/or mRNA sequences. Besides the prediction of the full-length transcript isoforms potentially expressed by the gene, the PIntron package includes a module for the CDS annotation of the predicted transcripts. CONCLUSIONS: PIntron, the software tool implementing our methodology, is available at http://www.algolab.eu/PIntron under GNU AGPL. PIntron has been shown to outperform state-of-the-art methods, and to quickly process some critical genes. At the same time, PIntron exhibits high accuracy (sensitivity and specificity) when benchmarked with ENCODE annotations.


Assuntos
Algoritmos , Processamento Alternativo , Etiquetas de Sequências Expressas , Animais , Éxons , Genômica , Humanos , Íntrons , Alinhamento de Sequência , Software
8.
J Comput Biol ; 26(9): 948-961, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140836

RESUMO

Indexing huge collections of strings, such as those produced by the widespread sequencing technologies, heavily relies on multistring generalizations of the Burrows-Wheeler transform (BWT) and the longest common prefix (LCP) array, since solving efficiently both problems are essential ingredients of several algorithms on a collection of strings, such as those for genome assembly. In this article, we explore a multithread computational strategy for building the BWT and LCP array. Our algorithm applies a divide and conquer approach that leads to parallel computation of multistring BWT and LCP array.


Assuntos
Algoritmos , Biologia Computacional/métodos , Análise de Sequência/métodos
9.
Nucleic Acids Res ; 34(Web Server issue): W440-3, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845044

RESUMO

Alternative splicing (AS) is now emerging as a major mechanism contributing to the expansion of the transcriptome and proteome complexity of multicellular organisms. The fact that a single gene locus may give rise to multiple mRNAs and protein isoforms, showing both major and subtle structural variations, is an exceptionally versatile tool in the optimization of the coding capacity of the eukaryotic genome. The huge and continuously increasing number of genome and transcript sequences provides an essential information source for the computational detection of genes AS pattern. However, much of this information is not optimally or comprehensively used in gene annotation by current genome annotation pipelines. We present here a web resource implementing the ASPIC algorithm which we developed previously for the investigation of AS of user submitted genes, based on comparative analysis of available transcript and genome data from a variety of species. The ASPIC web resource provides graphical and tabular views of the splicing patterns of all full-length mRNA isoforms compatible with the detected splice sites of genes under investigation as well as relevant structural and functional annotation. The ASPIC web resource-available at http://www.caspur.it/ASPIC/--is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility.


Assuntos
Processamento Alternativo , Isoformas de Proteínas/genética , Software , Algoritmos , Sequência de Bases , Genômica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Internet , Íntrons , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/química , Alinhamento de Sequência , Interface Usuário-Computador
10.
Artigo em Inglês | MEDLINE | ID: mdl-17975265

RESUMO

In this paper, we investigate the computational and approximation complexity of the Exemplar Longest Common Subsequence of a set of sequences (ELCS problem), a generalization of the Longest Common Subsequence problem, where the input sequences are over the union of two disjoint sets of symbols, a set of mandatory symbols and a set of optional symbols. We show that different versions of the problem are APX-hard even for instances with two sequences. Moreover, we show that the related problem of determining the existence of a feasible solution of the Exemplar Longest Common Subsequence of two sequences is NP-hard. On the positive side, we first present an efficient algorithm for the ELCS problem over instances of two sequences where each mandatory symbol can appear in total at most three times in the sequences. Furthermore, we present two fixed-parameter algorithms for the ELCS problem over instances of two sequences where the parameter is the number of mandatory symbols.


Assuntos
Biologia Computacional/métodos , Algoritmos , Computadores , Interpretação Estatística de Dados , Modelos Estatísticos , Modelos Teóricos , Análise de Sequência de DNA , Software
11.
J Comput Biol ; 24(10): 953-968, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28715269

RESUMO

The string graph for a collection of next-generation reads is a lossless data representation that is fundamental for de novo assemblers based on the overlap-layout-consensus paradigm. In this article, we explore a novel approach to compute the string graph, based on the FM-index and Burrows and Wheeler Transform. We describe a simple algorithm that uses only the FM-index representation of the collection of reads to construct the string graph, without accessing the input reads. Our algorithm has been integrated into the string graph assembler (SGA) as a standalone module to construct the string graph. The new integrated assembler has been assessed on a standard benchmark, showing that fast string graph (FSG) is significantly faster than SGA while maintaining a moderate use of main memory, and showing practical advantages in running FSG on multiple threads. Moreover, we have studied the effect of coverage rates on the running times.


Assuntos
Algoritmos , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Genoma Humano , Humanos
12.
J Comput Biol ; 23(3): 137-49, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26953874

RESUMO

The large amount of short read data that has to be assembled in future applications, such as in metagenomics or cancer genomics, strongly motivates the investigation of disk-based approaches to index next-generation sequencing (NGS) data. Positive results in this direction stimulate the investigation of efficient external memory algorithms for de novo assembly from NGS data. Our article is also motivated by the open problem of designing a space-efficient algorithm to compute a string graph using an indexing procedure based on the Burrows-Wheeler transform (BWT). We have developed a disk-based algorithm for computing string graphs in external memory: the light string graph (LSG). LSG relies on a new representation of the FM-index that is exploited to use an amount of main memory requirement that is independent from the size of the data set. Moreover, we have developed a pipeline for genome assembly from NGS data that integrates LSG with the assembly step of SGA (Simpson and Durbin, 2012 ), a state-of-the-art string graph-based assembler, and uses BEETL for indexing the input data. LSG is open source software and is available online. We have analyzed our implementation on a 875-million read whole-genome dataset, on which LSG has built the string graph using only 1GB of main memory (reducing the memory occupation by a factor of 50 with respect to SGA), while requiring slightly more than twice the time than SGA. The analysis of the entire pipeline shows an important decrease in memory usage, while managing to have only a moderate increase in the running time.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Genoma Humano , Humanos
13.
BMC Bioinformatics ; 6: 244, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16207377

RESUMO

BACKGROUND: Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. RESULTS: We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions) due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. CONCLUSION: Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.


Assuntos
Algoritmos , Computadores Moleculares , Éxons/genética , Perfilação da Expressão Gênica/métodos , Íntrons/genética , Animais , Benchmarking , Humanos , Modelos Moleculares , Alinhamento de Sequência , Design de Software , Validação de Programas de Computador
14.
Methods Mol Biol ; 1269: 173-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25577379

RESUMO

Alternative Splicing (AS) is the molecular phenomenon whereby multiple transcripts are produced from the same gene locus. As a consequence, it is responsible for the expansion of eukaryotic transcriptomes. Aberrant AS is involved in the onset and progression of several human diseases. Therefore, the characterization of exon-intron structure of a gene and the detection of corresponding transcript isoforms is an extremely relevant biological task. Nonetheless, the computational prediction of AS events and the repertoire of alternative transcripts is yet a challenging issue. Hereafter we introduce PIntron, a software package to predict the exon-intron structure and the full-length isoforms of a gene given a genomic region and a set of transcripts (ESTs and/or mRNAs). The software is open source and available at http://pintron.algolab.eu. PIntron has been designed for (and extensively tested on) a standard workstation without requiring dedicated expensive hardware. It easily manages large genomic regions and more than 20,000 ESTs, achieving good accuracy as shown in an experimental evaluation performed on 112 well-annotated genes selected from the ENCODE human regions used as training set in the EGASP competition.


Assuntos
Processamento Alternativo/genética , Software , Transcriptoma/genética
15.
J Comput Biol ; 21(1): 16-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24200390

RESUMO

Next-generation sequencing (NGS) technologies need new methodologies for alternative splicing (AS) analysis. Current computational methods for AS analysis from NGS data are mainly based on aligning short reads against a reference genome, while methods that do not need a reference genome are mostly underdeveloped. In this context, the main developed tools for NGS data focus on de novo transcriptome assembly (Grabherr et al., 2011 ; Schulz et al., 2012). While these tools are extensively applied for biological investigations and often show intrinsic shortcomings from the obtained results, a theoretical investigation of the inherent computational limits of transcriptome analysis from NGS data, when a reference genome is unknown or highly unreliable, is still missing. On the other hand, we still lack methods for computing the gene structures due to AS events under the above assumptions--a problem that we start to tackle with this article. More precisely, based on the notion of isoform graph (Lacroix et al., 2008), we define a compact representation of gene structures--called splicing graph--and investigate the computational problem of building a splicing graph that is (i) compatible with NGS data and (ii) isomorphic to the isoform graph. We characterize when there is only one representative splicing graph compatible with input data, and we propose an efficient algorithmic approach to compute this graph.


Assuntos
Processamento Alternativo , Modelos Genéticos , Algoritmos , Biologia Computacional , Gráficos por Computador , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Perfilação da Expressão Gênica/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência/estatística & dados numéricos , Análise de Sequência de RNA/estatística & dados numéricos
17.
J Comput Biol ; 16(1): 43-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119993

RESUMO

Alternative splicing (AS) is currently considered as one of the main mechanisms able to explain the huge gap between the number of predicted genes and the high complexity of the proteome in humans. The rapid growth of Expressed Sequence Tag (EST) data has encouraged the development of computational methods to predict alternative splicing from the analysis of EST alignment to genome sequences. EST data are also a valuable source to reconstruct the different transcript isoforms that derive from the same gene structure as a consequence of AS, as indeed EST sequences are obtained by fragmenting mRNAs from the same gene. The most recent studies on alternative splice sites detection have revealed that this topic is a quite challenging computational problem, far from a solution. The main computational issues related to the problem of detecting alternative splicing are investigated in this paper, and we analyze algorithmic solutions for this problem. We first formalize an optimization problem related to the prediction of constitutive and alternative splicing sites from EST sequences, the Minimum Exons ESTs Factorization problem (in short, MEF), and show that it is Np-hard, even for restricted instances. This problem leads us to define sets of spliced EST, that is, a set of EST factorized into their constitutive exons with respect to a gene. Then we investigate the computational problem of predicting transcript isoforms from spliced EST sequences. We propose a graph algorithm for the problem that is linear in the number of predicted isoforms and size of the graph. Finally, an experimental analysis of the method is performed to assess the reliability of the predictions.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Genes , Conformação de Ácido Nucleico , Algoritmos , Sequência de Bases , Éxons , Matemática , Dados de Sequência Molecular
18.
Brief Funct Genomic Proteomic ; 5(1): 46-51, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16769678

RESUMO

The fact that a large majority of mammalian genes are subject to alternative splicing indicates that this phenomenon represents a major mechanism for increasing proteome complexity. Here, we provide an overview of current methods for the computational prediction of alternative splicing based on the alignment of genome and transcript sequences. Specific features and limitations of different approaches and software are discussed, particularly those affecting prediction accuracy and assembly of alternative transcripts.


Assuntos
Algoritmos , Processamento Alternativo , Animais , Etiquetas de Sequências Expressas , Genoma , Genoma Humano , Humanos , Valor Preditivo dos Testes , Alinhamento de Sequência , Análise de Sequência de RNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA