RESUMO
PURPOSE: Multifocal disease in PTC is associated with an increased recurrence rate. Multifocal disease (MD) is underdiagnosed with the current gold standard of pre-operative ultrasound staging. Here, we evaluate the use of EMI-137 targeted molecular fluorescence-guided imaging (MFGI) and spectroscopy as a tool for the intra-operative detection of uni- and multifocal papillary thyroid cancer (PTC) aiming to improve disease staging and treatment selection. METHODS: A phase-1 study (NCT03470259) with EMI-137 was conducted to evaluate the possibility of detecting PTC using MFGI and quantitative fiber-optic spectroscopy. RESULTS: Fourteen patients underwent hemi- or total thyroidectomy (TTX) after administration of 0.09 mg/kg (n = 1), 0.13 mg/kg (n = 8), or 0.18 mg/kg (n = 5) EMI-137. Both MFGI and spectroscopy could differentiate PTC from healthy thyroid tissue after administration of EMI-137, which binds selectively to MET in PTC. 0.13 mg/kg was the lowest dosage EMI-137 that allowed for differentiation between PTC and healthy thyroid tissue. The smallest PTC focus detected by MFGI was 1.4 mm. MFGI restaged 80% of patients from unifocal to multifocal PTC compared to ultrasound. CONCLUSION: EMI-137-guided MFGI and spectroscopy can be used to detect multifocal PTC. This may improve disease staging and treatment selection between hemi- and total thyroidectomy by better differentiation between unifocal and multifocal disease. TRIAL REGISTRATION: NCT03470259.
RESUMO
PURPOSE: Patients undergoing prophylactic central compartment dissection (PCLND) for papillary thyroid cancer (PTC) are often overtreated. This study aimed to determine if molecular fluorescence-guided imaging (MFGI) and spectroscopy can be useful for detecting PTC nodal metastases (NM) and to identify negative central compartments intraoperatively. METHODS: We used a data-driven prioritization strategy based on transcriptomic profiles of 97 primary PTCs and 80 normal thyroid tissues (NTT) to identify tumor-specific antigens for a clinically available near-infrared fluorescent tracer. Protein expression of the top prioritized antigen was immunohistochemically validated with a tissue microarray containing primary PTC (n = 741) and NTT (n = 108). Staining intensity was correlated with 10-year locoregional recurrence-free survival (LRFS). A phase 1 study (NCT03470259) with EMI-137, targeting MET, was conducted to evaluate safety, optimal dosage for detecting PTC NM with MFGI, feasibility of NM detection with quantitative fiber-optic spectroscopy, and selective binding of EMI-137 for MET. RESULTS: MET was selected as the most promising antigen. A worse LRFS was observed in patients with positive versus negative MET staining (81.9% versus 93.2%; p = 0.02). In 19 patients, no adverse events related to EMI-137 occurred. 0.13 mg/kg EMI-137 was selected as optimal dosage for differentiating NM from normal lymph nodes using MFGI (p < 0.0001) and spectroscopy (p < 0.0001). MFGI identified 5/19 levels (26.3%) without NM. EMI-137 binds selectively to MET. CONCLUSION: MET is overexpressed in PTC and associated with increased locoregional recurrence rates. Perioperative administration of EMI-137 is safe and facilitates NM detection using MFGI and spectroscopy, potentially reducing the number of negative PCLNDs with more than 25%. CLINICAL TRIAL REGISTRATION: NCT03470259.
Assuntos
Carcinoma Papilar , Carcinoma , Neoplasias da Glândula Tireoide , Carcinoma/patologia , Carcinoma Papilar/diagnóstico por imagem , Humanos , Linfonodos/patologia , Recidiva Local de Neoplasia/patologia , Análise Espectral , Câncer Papilífero da Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , TireoidectomiaRESUMO
This study aimed to determine the ability of single fiber reflectance (SFR) spectroscopy incorporated in endoscopic ultrasound fine needle biopsy (EUS-FNB) procedures in the pancreas to distinguish benign and malignant pancreatic tissue in patient with pancreatic masses suspected for malignancy. Methods: This study was designed as a prospective observational single center study and included consecutive adult patients, who were scheduled for EUS-FNB of a solid pancreatic mass suspected for pancreatic ductal adenocarcinoma (PDAC). In total, seven optical parameters, derived from the absorption acquired spectra, were analyzed: blood volume fraction (BVF), microvascular saturation, average vessel diameter, bilirubin concentration (BIL), Mie amplitude, Mie slope and Rayleigh amplitude. Results: Forty-five patients with a suspicious pancreatic lesion undergoing EUS-FNB were included, of which most of the patients (N=34) were ultimately diagnosed with PDAC. Finally, 27 out of 45 (60.0%) patients were used for the final analysis of the optical parameters. The median (IQR) BVF differed significantly in benign compared to malignant tissue (0.86 [0.30-2.03] and 4.49 [1.28-15.47]; p=0.046). Combining BVF and BIL to a new parameter (θ) improved the discrimination between PDAC and benign pancreatic tissue (p=0.026). The area under the curve of θ was 0.84, resulting in a 92.8%, 75.0%, 97.5%, 50.0% and 91.3% sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for detection of PDAC. Conclusion: Differentiation between PDAC and benign pancreatic tissue using SFR spectroscopy during EUS-FNB procedures is promising. Future work should focus on comparing the diagnostic performance combining SFR spectroscopy with EUS-FNB and EUS-FNB alone.
Assuntos
Detecção Precoce de Câncer/métodos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Neoplasias Pancreáticas/diagnóstico , Análise Espectral/métodos , Idoso , Área Sob a Curva , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e EspecificidadeRESUMO
A profound characteristic of field cancerization is alterations in chromatin packing. This study aimed to quantify these alterations using electron microscopy image analysis of buccal mucosa cells of laryngeal, esophageal, and lung cancer patients. Analysis was done on normal-appearing mucosa, believed to be within the cancerization field, and not tumor itself. Large-scale electron microscopy (nanotomy) images were acquired of cancer patients and controls. Within the nuclei, the chromatin packing of euchromatin and heterochromatin was characterized. Furthermore, the chromatin organization was quantified through chromatin packing density scaling. A significant difference was found between the cancer and control groups in the chromatin packing density scaling parameter for length scales below the optical diffraction limit (200 nm) in both the euchromatin (p = 0.002) and the heterochromatin (p = 0.006). The chromatin packing scaling analysis also indicated that the chromatin organization of cancer patients deviated significantly from the control group. They might allow for novel strategies for cancer risk stratification and diagnosis with high sensitivity. This could aid clinicians in personalizing screening strategies for high-risk patients and follow-up strategies for treated cancer patients.
Assuntos
Cromatina , Mucosa Bucal , Neoplasias Bucais , Eucromatina , Heterocromatina , Humanos , Microscopia Eletrônica , Mucosa Bucal/citologia , Neoplasias Bucais/diagnósticoRESUMO
OBJECTIVE: The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. MATERIALS AND METHODS: Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm-2 (at 5 mW.cm-2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. RESULTS: A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. CONCLUSION: Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density. Intrinsic biological properties of tumor cell lines also play a role in determining the efficacy of targeted PIT. We have shown that in scc-U2 cells this difference may be caused by differences in the apoptopic pathway. Lasers Surg. Med. 50:513-522, 2018. © 2018 Wiley Periodicals, Inc.
Assuntos
Receptores ErbB/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia , Indóis/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , IsoindóisAssuntos
Endoscopia Gastrointestinal/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/metabolismo , Reto/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Área Sob a Curva , Quimiorradioterapia Adjuvante , Fibrose , Fluorescência , Humanos , Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Neoplasia Residual , Projetos Piloto , Valor Preditivo dos Testes , Curva ROC , Neoplasias Retais/terapia , Reto/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND AND OBJECTIVE: The effect of photodynamic therapy (PDT) is dependent on the localization of photosensitizer in the treatment volume at the time of illumination. Investigation of photosensitizer pharmacokinetics in and around the treatment volume aids in determining the optimal drug light interval for PDT. MATERIALS AND METHODS: In this paper we have investigated the distribution of the photosensitizers chlorin e6 and Bremachlorin in the oral squamous cell carcinoma cell-line OSC19-Luc-Gfp in a tongue tumor, tumor boundary, invasive tumor boundary, and normal tongue tissue by the use of confocal microscopy of frozen sections. Tongues were harvested at t = [3, 4.5, 6, 24, 48] hours after injection. RESULTS: Both photosensitizers showed a decreasing fluorescence with increasing incubation time, and at all time points higher fluorescence was measured in tumor boundary than in tumor itself. For short incubation times, a higher fluorescence intensity was observed in the invasive tumor border and normal tissue compared to tumor tissue. Bremachlorin showed a small increase in tumor to normal ratio at 24 and 48 hours incubation time. Ce6 was undetectable at 48 hours. We did not find a correlation between photosensitizer localization and the presence of vasculature. CONCLUSION: The modest tumor/tumor boundary to normal selectivity of between 1.2 and 2.5 exhibited by Bremachlorin 24 and 48 hours after administration may allow selective targeting of tongue tumors. Further studies investigating the relationship between Bremachlorin concentration and therapeutic efficacy PDT with long incubation times are warranted.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/farmacocinética , Neoplasias da Língua/tratamento farmacológico , Animais , Clorofilídeos , Combinação de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Distribuição AleatóriaRESUMO
PURPOSE: The ability to identify residual tumor tissues in patients with locally advanced esophageal cancer following neoadjuvant chemoradiotherapy (nCRT) is essential for monitoring the treatment response. Using the fluorescent tracer bevacizumab-800CW, we evaluated whether ultrasound-guided quantitative fluorescent molecular endoscopy (US-qFME), which combines quantitative fluorescence molecular endoscopy (qFME) with ultrasound-guided needle biopsy/single-fiber fluorescence (USNB/SFF), can be used to identify residual tumor tissues in patients following nCRT. EXPERIMENTAL DESIGN: Twenty patients received an additional endoscopy procedure the day before surgery. qFME was performed at the primary tumor site (PTS) and in healthy tissue to first establish the optimal tracer dose. USNB/SFF was then used to measure intrinsic fluorescence in the deeper PTS layers and lymph nodes (LN) suspected for metastasis. Finally, the intrinsic fluorescence and the tissue optical properties-specifically, the absorption and reduced scattering coefficients-were combined into a new parameter called omega. RESULTS: First, a 25-mg bevacizumab-800CW dose allowed for clear differentiation between the PTS and healthy tissue, with a target-to-background ratio (TBR) of 2.98 (IQR, 1.86-3.03). Moreover, we found a clear difference between the deeper esophageal PTS layers and suspected LN compared to healthy tissues, with TBR values of 2.18 and 2.17, respectively. Finally, our new parameter, omega, further improved the ability to differentiate between the PTS and healthy tissue. CONCLUSIONS: Combining bevacizumab-800CW with US-qFME may serve as a viable strategy for monitoring the response to nCRT in esophageal cancer and may help stratify patients regarding active surveillance versus surgery.
Assuntos
Neoplasias Esofágicas , Terapia Neoadjuvante , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/diagnóstico , Terapia Neoadjuvante/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Quimiorradioterapia/métodos , Bevacizumab/administração & dosagem , Resultado do Tratamento , FluorescênciaRESUMO
Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.
Assuntos
Carcinoma Ductal Pancreático , Indóis , Necrose , Imagem Óptica , Neoplasias Pancreáticas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/farmacocinética , Camundongos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Indóis/química , Distribuição Tecidual , Modelos Animais de Doenças , Linhagem Celular Tumoral , Imagem Corporal Total/métodos , Feminino , Combinação de Medicamentos , PorfirinasRESUMO
[This corrects the article DOI: 10.7150/thno.37949.].
RESUMO
Light fractionation, with a long dark interval, significantly increases the response to ALA-PDT in pre-clinical models and in non-melanoma skin cancer. We investigated if this increase in efficacy can be replicated in PAM 212 cells in vitro. The results show a significant decrease in cell survival after light fractionation which is dependent on the PpIX concentration and light dose of the first light fraction. This study supports the hypothesis that an underlying cellular mechanism is involved in the response to light fractionation in which a first light fraction leads to sub-lethally damaged cells that are sensitised to a second light fraction 2 hours later. The current study reveals the in vitro circumstances under which we can investigate the cellular pathways involved.
Assuntos
Ácido Aminolevulínico/farmacologia , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Relação Estrutura-AtividadeRESUMO
BACKGROUND AND OBJECTIVE: Foslip and Fospeg are liposomal formulations of the photosensitizer mTHPC (Foscan), which is used for photodynamic therapy (PDT) of malignancies. Literature suggests that liposomal mTHPC formulations have better properties and increased tumor uptake compared to Foscan. To investigate this, we used the 4NQO-induced carcinogen model to compare the localization of the different mTHPC formulations within normal, precancerous, and cancerous tissue. In contrast to xenograft models, the 4NQO model closely mimics the carcinogenesis of human oral dysplasia. MATERIALS AND METHODS: Fifty-four rats drank water with the carcinogen 4NQO. When oral examination revealed tumor, the rats received 0.15 mg/kg mTHPC (Foscan, Foslip, or Fospeg). At 2, 4, 8, 24, 48, or 96 hours after injection the rats were sacrificed. Oral tissue was sectioned for HE slides and for fluorescence confocal microscopy. The HE slides were scored on the severity of dysplasia by the epithelial atypia index (EAI). The calibrated fluorescence intensity per formulation or time point was correlated to EAI. RESULTS: Fospeg showed higher mTHPC fluorescence in normal and tumor tissue compared to both Foscan and Foslip. Significant differences in fluorescence between tumor and normal tissue were found for all formulations. However, at 4, 8, and 24 hours only Fospeg showed a significant difference. The Pearson's correlation between EAI and mTHPC fluorescence proved weak for all formulations. CONCLUSION: In our induced carcinogenesis model, Fospeg exhibited a tendency for higher fluorescence in normal and tumor tissue compared to Foslip and Foscan. In contrast to Foscan and Foslip, Fospeg showed significantly higher fluorescence in tumor versus normal tissue at earlier time points, suggesting a possible clinical benefit compared to Foscan. Low correlation between grade of dysplasia and mTHPC fluorescence was found.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Mesoporfirinas/farmacocinética , Mucosa Bucal/metabolismo , Neoplasias Bucais/metabolismo , Fármacos Fotossensibilizantes/farmacocinética , 4-Nitroquinolina-1-Óxido , Animais , Carcinógenos , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/tratamento farmacológico , Lipossomos , Masculino , Mesoporfirinas/administração & dosagem , Mesoporfirinas/uso terapêutico , Microscopia Confocal , Microscopia de Fluorescência , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Variações Dependentes do Observador , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Ratos WistarRESUMO
Esophageal adenocarcinoma causes 6% of cancer-related deaths worldwide. Near-infrared fluorescence molecular endoscopy (NIR-FME) uses a tracer that targets overexpressed proteins. In this study, we aimed to investigate the feasibility of an epidermal growth factor receptor (EGFR)-targeted tracer, cetuximab-800CW, to improve detection of early-stage esophageal adenocarcinoma. Methods: We validated EGFR expression in 73 esophageal tissue sections. Subsequently, we topically administered cetuximab-800CW and performed high-definition white-light endoscopy (HD-WLE), narrow-band imaging, and NIR-FME in 15 patients with Barrett esophagus (BE). Intrinsic fluorescence values were quantified using multidiameter single-fiber reflectance and single-fiber fluorescence spectroscopy. Back-table imaging, histopathologic examination, and EGFR immunohistochemistry on biopsy samples collected during NIR-FME procedures were performed and compared with in vivo imaging results. Results: Immunohistochemical preanalysis showed high EGFR expression in 67% of dysplastic tissue sections. NIR-FME visualized all 12 HD-WLE-visible lesions and 5 HD-WLE-invisible dysplastic lesions, with increased fluorescence signal in visible dysplastic BE lesions compared with nondysplastic BE as shown by multidiameter single-fiber reflectance/single-fiber fluorescence, reflecting a target-to-background ratio of 1.5. Invisible dysplastic lesions also showed increased fluorescence, with a target-to-background ratio of 1.67. Immunohistochemistry analysis showed EGFR overexpression in 16 of 17 (94%) dysplastic BE lesions, which all showed fluorescence signal. Conclusion: This study has shown that NIR-FME using cetuximab-800CW can improve detection of dysplastic lesions missed by HD-WLE and narrow-band imaging.
Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Cetuximab , Fluorescência , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/patologia , Endoscopia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Receptores ErbB/metabolismoRESUMO
This study utilizes Monte Carlo simulations of single fiber fluorescence to develop an empirical model that corrects for the influence of scattering and absorption on fluorescence intensity (F(SF)). The model expresses F(SF) in terms of the reduced scattering coefficient (µs') and absorption coefficient (µ(a)), each determined independently at excitation and emission wavelengths (λ(x) and λ(m)), and the fiber diameter (d(f)). This model returns accurate descriptions (mean residual <6%) of F(SF) across a biologically relevant range of µs' and µ(a) values and is insensitive to the form of the scattering phase function.
Assuntos
Método de Monte Carlo , Espectrometria de Fluorescência/métodos , AbsorçãoRESUMO
Photodynamic therapy (PDT) using topical porphyrin-precursors is a promising treatment for superficial basal cell carcinoma (sBCC), but it needs further optimization. The aim of this study was to compare 5-year lesion (complete) response rates of sBCC treated with topical aminolaevulinic acid (ALA)-PDT using a single illumination vs. ALA-PDT using a 2-fold illumination scheme. A prospective, randomized study was performed, in which 91 patients with 299 lesions were treated with a 2-fold illumination scheme with 2 light fractions of 20 and 80 J/cm2 delivered 4 and 6 h after a single application of 20% ALA, and 106 patients with 274 lesions were treated with a single illumination of 75 J/cm2 4 h after a single application of 20% ALA. All lesions were treated at a fluence rate of 50 mW/cm2. An interim time to event analysis of complete response (CR) rates at 12 months showed encouraging results, and therefore lesions were followed for 5 years post-therapy. A third group of 50 patients with 172 lesions treated with 2-fold illumination were included after the initial period and analysed separately. The CR rate was significantly greater following the 2-fold illumination than the single illumination (p = 0.0002, log-rank test). Five years after therapy the CR rate after 2-fold illumination was 88%, whereas the CR rate after single illumination was 75%. The CR rate in the third group of lesions, treated with 2-fold illumination was 97% and 88% at 12 months and 5 years after therapy, respectively. Long-term follow-up indicates superior efficacy in sBCC of ALA-PDT with 2-fold illumination compared with ALA-PDT with single illumination.
Assuntos
Ácido Aminolevulínico/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Administração Cutânea , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Aminolevulínico/administração & dosagem , Carcinoma Basocelular/patologia , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Países Baixos , Fármacos Fotossensibilizantes/administração & dosagem , Estudos Prospectivos , Neoplasias Cutâneas/patologia , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND AND OBJECTIVE: Anal cancer and preneoplastic anal lesions (anal intraepithelial neoplasia, AIN) rising especially in men having sex with men (MSM). There are no widely accepted treatment standards for AIN. Photodynamic therapy (PDT) using the systemic sensitizer meta-tetrahydroxyphenylchlorin (mTHPC) has the potential to treat the anal area even when the exact borders of the preneoplastic anal lesion cannot easily be visualized. STUDY DESIGN/MATERIALS AND METHODS: In this prospective intervention study, 15 HIV-positive MSM with AIN 3 were treated in 25 PDT-sessions using mTHPC intravenously administered at drug doses of 0.075-0.15 mg ml(-1) and illumination at 48 hours. The illumination was performed using a custom made applicator using either red light (652 nm) to a measured intended fluence of 10 and 20 J cm(-2) and green light (532 nm) to a measured intended fluence of 105, 210, and 340 J cm(-2) . Red and green illuminations were performed at a (green) equivalent fluence rate of 105 mW cm(-2) . RESULTS: Initial complete response was seen in 7/25 (28%) of treatments and another 4/25 (16%) initial partial responses. After an average 8 months, recurrences were detected in 7/11 (64%) of sessions that initially showed response. A total 4/25 (16%) showed persistent complete response 6-15 months after green light illumination. Red light illuminations caused more significant side effects combined with no persistent complete response. Reported side effects were intense pain, bloody and purulent rectal discharge, and anal stricture formation, in one patient. CONCLUSION: The results show that the use of systemic mTHPC is partially effective for the treatment of AIN 3.
Assuntos
Neoplasias do Ânus/tratamento farmacológico , Carcinoma in Situ/tratamento farmacológico , Mesoporfirinas/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Adulto , Neoplasias do Ânus/patologia , Carcinoma in Situ/patologia , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Medição da Dor , Fotoquimioterapia/efeitos adversos , Estudos ProspectivosRESUMO
Methods that allow real-time, longitudinal, intravital detection of the fluorescence distribution and the cellular and vascular responses within tumor and normal tissue are important tools to obtain valuable information when investigating new photosensitizers and photodynamic therapy (PDT) responses. Intravital confocal microscopy using the dorsal skinfold chamber model gives the opportunity to visualize and determine the distribution of photosensitizers within tumor and normal tissue. Next to that, it also allows the visualization of the effect of treatment with respect to changes in vascular diameter and blood flow, vascular leakage, and tissue necrosis, in the first days post-illumination. Here, we describe the preparation of the skinfold chamber model and the intravital microscopy techniques involved, for a strategy we recently introduced, that is, the nanobody-targeted PDT. In this particular approach, photosensitizers are conjugated to nanobodies to target these specifically to cancer cells.
Assuntos
Fotoquimioterapia , Anticorpos de Domínio Único , Microscopia Intravital , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Anticorpos de Domínio Único/farmacologiaRESUMO
Barrett's esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.
RESUMO
This study presents a methodology to accurately extract the absorption coefficient from single fiber reflectance spectra measured in turbid media without a priori knowledge of either the reduced scattering coefficient or the phase function. This novel approach accounts for the interrelated effects these properties have on the photon path length, yielding estimates of an absorption coefficient on average within <7.5% of true values over a wide range of biologically relevant optical properties.
Assuntos
Espalhamento de Radiação , Análise Espectral/métodos , Absorção , Fenômenos ÓpticosRESUMO
This study utilizes experimentally validated Monte Carlo simulations to identify a mathematical formulation of the reflectance intensity collected by a single fiber probe expressed in terms of the reduced scattering coefficient (µs'), fiber diameter d(fiber), and a property of the first two moments of the scattering phase function (γ). This model is then utilized to accurately obtain wavelength-dependent estimates of µs'(λ) and γ(λ) from multiple single fiber spectral measurements of a turbid medium obtained with different diameters. This method returns accurate descriptions (mean residual <3%) of both µs' and γ across the biologically relevant range.