Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 939: 173316, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782290

RESUMO

Freshwater systems are facing a number of pressures due to the inputs of polar organic contaminants from a range of sources including agriculture, domestic and industry. The River Itchen and River Test are two sensitive chalk streams in Southern England that are experiencing a decline in invertebrate communities. We used Chemcatcher passive samplers to measure time-weighted average concentrations (14 days) of polar pollutants at nine sites on the River Itchen and eight sites on the River Test over a 12-month period. Sampler extracts were analysed using a targeted LC/MS method. In total, 121 plant protection products and pharmaceutical and personal care products were quantified (range of log Kow from - 1.5 to 7). Concentrations (sub ng L-1 to >500 ng L-1) in both rivers showed spatial and temporal variations. A greater number of compounds and higher concentrations were found in the River Test. The chemical profile was dominated by inputs from wastewater treatment plants and legacy plant protection products. On the River Itchen, high concentrations (∼100 ng L-1) of caffeine were observed directly downstream of a fish farm. Using the NORMAN database, the predicted no effect concentration (PNEC) freshwater values were exceeded by only five contaminants (2-hydroxy-terbuthylazine, alprazolam, azithromycin, diclofenac and imidacloprid). In addition, venlafaxine was detected above its EU Watch List concentration. These exceedances were mainly downstream of direct inputs from treatment plants. These compounds are known to have ecotoxicological effects on a range of aquatic biota including macroinvertebrates. Of concern is the ubiquitous presence of the ectoparasiticide imidacloprid, highlighting the need to control its use. The impact of the cocktail of pollutants found in this study on the long-term effects on chalk stream ecosystems remains unknown and needs further investigation.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Rios/química , Monitoramento Ambiental/métodos , Medição de Risco , Inglaterra
2.
MethodsX ; 10: 102054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36851979

RESUMO

The monitoring of polar organic pollutants in surface water is now undertaken to fulfil a number of legislative requirements. Passive sampling is being frequently used for this purpose and includes the commercially available Chemcatcher device. This protocol is based on knowledge that has been acquired over the past ten years in the use of the Chemcatcher for monitoring a wide range of polar organic compounds in freshwater. It provides detailed procedures and guidelines of how to prepare the sampler in the laboratory, deploy and retrieve the device in the field (including water and sampling site measurements) and subsequent sample processing in the laboratory up to instrumental analysis. By end users adopting this standardized, systematic protocol it will help to ensure the reproducibility of their monitoring data.•Robust and detailed procedure for the sampling of polar pollutants in surface waters using the Chemcatcher passive sampler•A low cost, novel and versatile apparatus for deploying the Chemcatcher at riverine sites•Practical tips based on extensive experience of using the Chemcatcher are provided for end-users.

3.
Environ Sci Pollut Res Int ; 30(7): 17965-17983, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205867

RESUMO

The River Itchen and River Test, two chalk streams in Southern England, are sites of special scientific interest. These ecosystems face a number of environmental pressures from anthropogenic inputs of organic pollutants. Hence, we investigated the occurrence of these chemicals within the two catchments. Spot water samples (1 L) were collected at nineteen sites along the catchment on two occasions (March and June 2019). Samples were extracted (HLB-L sorbent disks) and analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and gas chromatography-mass spectrometry. Compounds were identified against commercially available databases. Using this approach, we found 115 pharmaceutical and personal care products, 81 plant protection products and 35 industrial chemicals. This complex mixture of pollutants covered a range of physico-chemical properties and included priority substances in the EU Water Framework Directive or currently on the third Watch List. Both rivers had similar chemical profiles for both months. Herbicides and fungicides were dominant in the spring, whereas insecticides occurred more frequently in the summer. Point discharges from wastewater treatment plants were the main source of pharmaceutical and personal care products. Agricultural activities were the main contributor to the presence of plant protection products. The impact of these organic chemicals on the ecology, particularly on macroinvertebrate biodiversity, is unknown and warrants further investigation. Our suspect screening approach could guide future toxicological investigations to assess the environmental impacts of these diverse chemicals.


Assuntos
Cosméticos , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Cosméticos/análise , Preparações Farmacêuticas , Reino Unido , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA