Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 146(5): 785-98, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21855979

RESUMO

Basal synaptic transmission involves the release of neurotransmitters at individual synapses in response to a single action potential. Recent discoveries show that astrocytes modulate the activity of neuronal networks upon sustained and intense synaptic activity. However, their ability to regulate basal synaptic transmission remains ill defined and controversial. Here, we show that astrocytes in the hippocampal CA1 region detect synaptic activity induced by single-synaptic stimulation. Astrocyte activation occurs at functional compartments found along astrocytic processes and involves metabotropic glutamate subtype 5 receptors. In response, astrocytes increase basal synaptic transmission, as revealed by the blockade of their activity with a Ca(2+) chelator. Astrocytic modulation of basal synaptic transmission is mediated by the release of purines and the activation of presynaptic A(2A) receptors by adenosine. Our work uncovers an essential role for astrocytes in the regulation of elementary synaptic communication and provides insight into fundamental aspects of brain function.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/citologia , Encéfalo/metabolismo , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5
2.
Brain ; 146(11): 4425-4436, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327376

RESUMO

Amyotrophic lateral sclerosis (ALS), the major adult-onset motor neuron disease, has been viewed almost exclusively as a disease of upper and lower motor neurons, with muscle changes interpreted as a consequence of the progressive loss of motor neurons and neuromuscular junctions. This has led to the prevailing view that the involvement of muscle in ALS is only secondary to motor neuron loss. Skeletal muscle and motor neurons reciprocally influence their respective development and constitute a single functional unit. In ALS, multiple studies indicate that skeletal muscle dysfunction might contribute to progressive muscle weakness, as well as to the final demise of neuromuscular junctions and motor neurons. Furthermore, skeletal muscle has been shown to participate in disease pathogenesis of several monogenic diseases closely related to ALS. Here, we move the narrative towards a better appreciation of muscle as a contributor of disease in ALS. We review the various potential roles of skeletal muscle cells in ALS, from passive bystanders to active players in ALS pathophysiology. We also compare ALS to other motor neuron diseases and draw perspectives for future research and treatment.


Assuntos
Esclerose Lateral Amiotrófica , Adulto , Humanos , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Músculo Esquelético/patologia , Junção Neuromuscular/patologia , Debilidade Muscular
3.
Glia ; 70(9): 1605-1629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35474470

RESUMO

Synaptic elements from neuromuscular junctions (NMJs) undergo massive morphological and functional changes upon nerve injury. While morphological changes of NMJ-associated glia in response to injury has been investigated, their functional properties remain elusive. Perisynaptic Schwann cells (PSCs), glial cells at the NMJ, are essential for NMJ maintenance and repair, and are involved in synaptic efficacy and plasticity. Importantly, these functions are regulated by PSCs ability to detect synaptic transmission through, notably, muscarinic (mAChRs) and purinergic receptors' activation. Using Ca2+ imaging and electrophysiological recordings of synaptic transmission at the mouse NMJ, we investigated PSC receptors activation following denervation and during reinnervation in adults and at denervated NMJs in an ALS mouse model (SOD1G37R ). We observed reduced PSCs mAChR-mediated Ca2+ responses at denervated and reinnervating NMJs. Importantly, PSC phenotypes during denervation and reinnervation were distinct than the one observed during NMJ maturation. At denervated NMJs, exogenous activation of mAChRs greatly diminished galectin-3 expression, a glial marker of phagocytosis. PSCs Ca2+ responses at reinnervating NMJs did not correlate with the number of innervating axons or process extensions. Interestingly, we observed an extended period of reduced PSC mAChRs activation after the injury (up to 60 days), suggesting a glial memory of injury. PSCs associated with denervated NMJs in an ALS model (SOD1G37R mice) did not show any muscarinic adaptation, a phenotype incompatible with NMJ repair. Understanding functional mechanisms that underlie this glial response to injury may contribute to favor complete NMJ and motor recovery.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Colinérgicos/metabolismo , Camundongos , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Superóxido Dismutase-1/metabolismo
4.
J Neurosci ; 40(40): 7759-7777, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32859714

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motoneurons (MNs) in a motor-unit (MU)-dependent manner. Glial dysfunction contributes to numerous aspects of the disease. At the neuromuscular junction (NMJ), early alterations in perisynaptic Schwann cell (PSC), glial cells at this synapse, may impact their ability to regulate NMJ stability and repair. Indeed, muscarinic receptors (mAChRs) regulate the repair phenotype of PSCs and are overactivated at disease-resistant NMJs [soleus muscle (SOL)] in SOD1G37R mice. However, it remains unknown whether this is the case at disease-vulnerable NMJs and whether it translates into an impairment of PSC-dependent repair mechanisms. We used SOL and sternomastoid (STM) muscles from SOD1G37R mice and performed Ca2+-imaging to monitor PSC activity and used immunohistochemistry to analyze their repair and phagocytic properties. We show that PSC mAChR-dependent activity was transiently increased at disease-vulnerable NMJs (STM muscle). Furthermore, PSCs from both muscles extended disorganized processes from denervated NMJs and failed to initiate or guide nerve terminal sprouts at disease-vulnerable NMJs, a phenomenon essential for compensatory reinnervation. This was accompanied by a failure of numerous PSCs to upregulate galectin-3 (MAC-2), a marker of glial axonal debris phagocytosis, on NMJ denervation in SOD1 mice. Finally, differences in these PSC-dependent NMJ repair mechanisms were MU type dependent, thus reflecting MU vulnerability in ALS. Together, these results reveal that neuron-glia communication is ubiquitously altered at the NMJ in ALS. This appears to prevent PSCs from adopting a repair phenotype, resulting in a maladapted response to denervation at the NMJ in ALS.SIGNIFICANCE STATEMENT Understanding how the complex interplay between neurons and glial cells ultimately lead to the degeneration of motor neurons and loss of motor function is a fundamental question to comprehend amyotrophic lateral sclerosis (ALS). An early and persistent alteration of glial cell activity takes place at the neuromuscular junction (NMJ), the output of motor neurons, but its impact on NMJ repair remains unknown. Here, we reveal that glial cells at disease-vulnerable NMJs often fail to guide compensatory nerve terminal sprouts and to adopt a phagocytic phenotype on denervated NMJs in SOD1G37R mice. These results show that glial cells at the NMJ elaborate an inappropriate response to NMJ degeneration in a manner that reflects motor-unit (MU) vulnerability and potentially impairs compensatory reinnervation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Cálcio/metabolismo , Galectina 3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Fagocitose , Receptores Muscarínicos/metabolismo , Células de Schwann/fisiologia , Superóxido Dismutase-1/genética , Potenciais Sinápticos
5.
PLoS Biol ; 16(10): e2005512, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286079

RESUMO

Odor-guided behaviors, including homing, predator avoidance, or food and mate searching, are ubiquitous in animals. It is only recently that the neural substrate underlying olfactomotor behaviors in vertebrates was uncovered in lampreys. It consists of a neural pathway extending from the medial part of the olfactory bulb (medOB) to locomotor control centers in the brainstem via a single relay in the caudal diencephalon. This hardwired olfactomotor pathway is present throughout life and may be responsible for the olfactory-induced motor behaviors seen at all life stages. We investigated modulatory mechanisms acting on this pathway by conducting anatomical (tract tracing and immunohistochemistry) and physiological (intracellular recordings and calcium imaging) experiments on lamprey brain preparations. We show that the GABAergic circuitry of the olfactory bulb (OB) acts as a gatekeeper of this hardwired sensorimotor pathway. We also demonstrate the presence of a novel olfactomotor pathway that originates in the non-medOB and consists of a projection to the lateral pallium (LPal) that, in turn, projects to the caudal diencephalon and to the mesencephalic locomotor region (MLR). Our results indicate that olfactory inputs can induce behavioral responses by activating brain locomotor centers via two distinct pathways that are strongly modulated by GABA in the OB. The existence of segregated olfactory subsystems in lampreys suggests that the organization of the olfactory system in functional clusters may be a common ancestral trait of vertebrates.


Assuntos
Lampreias/fisiologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Diencéfalo/anatomia & histologia , Diencéfalo/fisiologia , Moduladores GABAérgicos/metabolismo , Lampreias/anatomia & histologia , Locomoção/fisiologia , Mesencéfalo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Odorantes
6.
Nat Rev Neurosci ; 15(11): 703-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493308

RESUMO

The formation of highly efficient and reliable synapses at the neuromuscular junction (NMJ) relies on dynamic molecular interactions. Studies of the development and maturation of the NMJ have focused on events that are dependent on synaptic activity and that require the coordinated actions of nerve- and muscle-derived molecules with different targets and effects. More recently, perisynaptic Schwann cells--the glial cells at NMJs--have become an important focus of research. These glia concomitantly contribute to pre- and postsynaptic maturation while undergoing maturation themselves. Thus, an intricate 'danse à trois''regulates the maturation of the NMJ to form a highly efficient communication unit, in which fine glial processes lie in close proximity to a highly concentrated population of postsynaptic receptors and perfectly aligned presynaptic release sites.


Assuntos
Neurogênese/fisiologia , Junção Neuromuscular/crescimento & desenvolvimento , Transmissão Sináptica/fisiologia , Animais , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Transdução de Sinais/fisiologia
7.
J Neurosci ; 37(37): 8901-8918, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821658

RESUMO

Denervation of the neuromuscular junction (NMJ) precedes the loss of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). ALS is characterized by a motor unit (MU)-dependent vulnerability where MNs with fast-fatigable (FF) characteristics are lost first, followed by fast fatigue-resistant (FR) and slow (S) MNs. However, changes in NMJ properties as a function of MU types remain debated. We hypothesized that NMJ synaptic functions would be altered precociously in an MU-specific manner, before structural alterations of the NMJ. Synaptic transmission and morphological changes of NMJs have been explored in two nerve-muscle preparations of male SOD1G37R mice and their wild-type (WT) littermates: the soleus (S and FR MU); and the extensor digitorum longus (FF MU). S, FR, and FF NMJs of WT mice showed distinct synaptic properties from which we build an MU synaptic profile (MUSP) that reports MU-dependent NMJ synaptic properties. At postnatal day 180 (P180), FF and S NMJs of SOD1 already showed, respectively, lower and higher quantal content compared with WT mice, before signs of MN death and before NMJ morphological alterations. Changes persisted in both muscles until preonset (P380), while denervation was frequent in the mutant mouse. MN death was evident at this stage. Additional changes occurred at clinical disease onset (P450) for S and FR MU. As a whole, our results reveal a reversed MUSP in SOD1 mutants and highlight MU-specific synaptic changes occurring in a precise temporal sequence. Importantly, changes in synaptic properties appear to be good predictors of vulnerability to neurodegeneration.SIGNIFICANCE STATEMENT The inadequate excitability of motor neurons and their output, the neuromuscular junctions (NMJs), has been considered a key factor in the detrimental outcome of the motor function in amyotrophic lateral sclerosis. However, a conundrum persists at the NMJ whereby persistent but incoherent opposite neurotransmission changes have been reported to take place. This article untangles this conundrum by systematically analyzing the changes in synaptic properties over the course of the disease progression as a function of the motor unit type. This temporal analysis reveals that early synaptic alterations evolve with disease progression but precede NMJ neurodegeneration. These data provide a novel framework of analysis and comparison of synaptic transmission alterations in neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores/patologia , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Plasticidade Neuronal , Sinapses/patologia , Transmissão Sináptica , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superóxido Dismutase-1/genética
8.
J Physiol ; 595(3): 647-661, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633977

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease leading to the death of motor neurons (MNs). It is also recognized as a non-cell autonomous disease where glial cells in the CNS are involved in its pathogenesis and progression. However, although denervation of neuromuscular junctions (NMJs) represents an early and major event in ALS, the importance of glial cells at this synapse receives little attention. An interesting possibility is that altered relationships between glial cells and MNs in the spinal cord in ALS may also take place at the NMJ. Perisynaptic Schwann cells (PSCs), which are glial cells at the NMJ, show great morphological and functional adaptability to ensure NMJ stability, maintenance and repair. More specifically, PSCs change their properties according to the state of innervation. Hence, abnormal changes or lack of changes can have detrimental effects on NMJs in ALS. This review will provide an overview of known and hypothesized interactions between MN nerve terminals and PSCs at NMJs during development, aging and ALS-induced denervation. These neuron-PSC interactions may be crucial to the understanding of how degenerative changes begin and progress at NMJs in ALS, and represent a novel therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neuroglia/fisiologia , Junção Neuromuscular/fisiologia , Animais , Humanos , Neurônios Motores/fisiologia
9.
Hum Mol Genet ; 24(22): 6515-29, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26362257

RESUMO

Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises.


Assuntos
Esclerose Lateral Amiotrófica/genética , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/genética , Neurônios Motores/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Autofagia/genética , Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Técnicas de Introdução de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Mutação de Sentido Incorreto , Estresse Fisiológico , Proteínas de Transporte Vesicular/metabolismo
10.
J Neurosci ; 35(2): 688-706, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589763

RESUMO

Amyotrophic lateral sclerosis (ALS) is a late-onset neuromuscular disease characterized by progressive loss of motor neurons (MNs) preceded by neuromuscular junction (NMJ) denervation. Despite the importance of NMJ denervation in ALS, the mechanisms involved remain unexplored and ill defined. The contribution of glial cells in the disease has been highlighted, including axonal Schwann cell activation that precedes the decline of motor function and the onset of hindlimb paralysis. Because NMJ denervation occurs early in the process and that perisynaptic Schwann cells (PSCs), glial cells at the NMJ, regulate morphological stability, integrity, and repair of the NMJ, one could predict that PSC functions would be altered even before denervation, contributing to NMJ malfunctions. We tested this possibility using a slowly progressive model of ALS (SOD1(G37R) mice). We observed a normal NMJ organization at a presymptomatic stage of ALS (120 d), but PSC detection of endogenous synaptic activity revealed by intracellular Ca(2+) changes was enhanced compared with their wild-type littermates. This inappropriate PSC decoding ability was associated with an increased level of neurotransmitter release and dependent on intrinsic glial properties related to enhanced muscarinic receptor activation. The alteration of PSC muscarinic receptor functions also persists during the preonset stage of the disease and became dependent on MN vulnerability with age. Together, these results suggest that PSC properties are altered in the disease process in a manner that would be detrimental for NMJ repair. The impairments of PSC functions may contribute to NMJ dysfunction and ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Junção Neuromuscular/fisiopatologia , Células de Schwann/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Cálcio/metabolismo , Camundongos , Junção Neuromuscular/metabolismo , Receptores Muscarínicos/metabolismo , Células de Schwann/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Potenciais Sinápticos
11.
J Neurosci ; 33(4): 1297-313, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345206

RESUMO

It is now accepted that glial cells actively interact with neurons and modulate their activity in many regions of the nervous system. Importantly, modulation of synaptic activity by glial cells depends on the proper detection and decoding of synaptic activity. However, it remains unknown whether glial cells are capable of decoding synaptic activity and properties during early postdevelopmental stages, in particular when different presynaptic nerve terminals compete for the control of the same synaptic site. This may be particularly relevant because a major determinant of the outcome of synaptic competition process is the relative synaptic strength of competing terminals whereby stronger terminals are more likely to occupy postsynaptic territory and become stabilized while weaker terminals are often eliminated. Hence, because of their ability to decode synaptic activity, glial cells should be able to integrate neuronal information of competing terminals. Using simultaneous glial Ca(2+) imaging and synaptic recordings of dually innervated mouse neuromuscular junctions, we report that single glial cells decipher the strength of competing nerve terminals. Activity of single glial cells, revealed by Ca(2+) responses, reflects the synaptic strength of each competing nerve terminal and the state of synaptic competition. This deciphering is mediated by functionally segregated purinergic receptors and intrinsic properties of glial cells. Our results indicate that glial cells decode ongoing synaptic competition and, hence, are poised to influence its outcome.


Assuntos
Neuroglia/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Eletrofisiologia , Imuno-Histoquímica , Masculino , Camundongos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38858074

RESUMO

The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.

13.
Cell Stress Chaperones ; 29(3): 359-380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570009

RESUMO

Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Proteínas de Ligação a DNA , Inibidores de Histona Desacetilases , Neurônios Motores , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Hidroxilaminas/farmacologia , Células Cultivadas , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética
14.
Neurotherapeutics ; : e00388, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972779

RESUMO

Protein misfolding and mislocalization are common to both familial and sporadic forms of amyotrophic lateral sclerosis (ALS). Maintaining proteostasis through induction of heat shock proteins (HSP) to increase chaperoning capacity is a rational therapeutic strategy in the treatment of ALS. However, the threshold for upregulating stress-inducible HSPs remains high in neurons, presenting a therapeutic obstacle. This study used mouse models expressing the ALS variants FUSR521G or SOD1G93A to follow up on previous work in cultured motor neurons showing varied effects of the HSP co-inducer, arimoclomol, and class I histone deacetylase (HDAC) inhibitors on HSP expression depending on the ALS variant being expressed. As in cultured neurons, neither expression of the transgene nor drug treatments induced expression of HSPs in cortex, spinal cord or muscle of FUSR521G mice, indicating suppression of the heat shock response. Nonetheless, arimoclomol, and RGFP963, restored performance on cognitive tests and improved cortical dendritic spine densities. In SOD1G93A mice, multiple HSPs were upregulated in hindlimb skeletal muscle, but not in lumbar spinal cord with the exception of HSPB1 associated with astrocytosis. Drug treatments improved contractile force but reduced the increase in HSPs in muscle rather than facilitating their expression. The data point to mechanisms other than amplification of the heat shock response underlying recovery of cognitive function in ALS-FUS mice by arimoclomol and class I HDAC inhibition and suggest potential benefits in counteracting cognitive impairment in ALS, frontotemporal dementia and related disorders.

15.
Mol Brain ; 16(1): 55, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400913

RESUMO

Plasticity of principal cells and inhibitory interneurons underlies hippocampal memory. Bidirectional modulation of somatostatin cell mTORC1 activity, a crucial translational control mechanism in synaptic plasticity, causes parallel changes in hippocampal CA1 somatostatin interneuron (SOM-IN) long-term potentiation and hippocampus-dependent memory, indicating a key role in learning. However, SOM-IN activity changes and behavioral correlates during learning, and the role of mTORC1 in these processes, remain ill-defined. To address these questions, we used two-photon Ca2+ imaging from SOM-INs during a virtual reality goal-directed spatial memory task in head-fixed control mice (SOM-IRES-Cre mice) or in mice with conditional knockout of Rptor (SOM-Rptor-KO mice) to block mTORC1 activity in SOM-INs. We found that control mice learn the task, but SOM-Raptor-KO mice exhibit a deficit. Also, SOM-IN Ca2+ activity became increasingly related to reward during learning in control mice but not in SOM-Rptor-KO mice. Four types of SOM-IN activity patterns related to reward location were observed, "reward off sustained", "reward off transient", "reward on sustained" and "reward on transient", and these responses showed reorganization after reward relocation in control but not SOM-Rptor-KO mice. Thus, SOM-INs develop mTORC1-dependent reward- related activity during learning. This coding may bi-directionally interact with pyramidal cells and other structures to represent and consolidate reward location.


Assuntos
Hipocampo , Interneurônios , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Interneurônios/metabolismo , Hipocampo/metabolismo , Somatostatina/metabolismo , Recompensa
16.
Front Cell Dev Biol ; 10: 838612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372356

RESUMO

Lynx1 is a glycosylphosphatidylinositol (GPI)-linked protein shown to affect synaptic plasticity through modulation of nicotinic acetylcholine receptor (nAChR) subtypes in the brain. Because of this function and structural similarity to α-bungarotoxin, which binds muscle-specific nAChRs with high affinity, Lynx1 is a promising candidate for modulating nAChRs in skeletal muscles. However, little is known about the expression and roles of Lynx1 in skeletal muscles and neuromuscular junctions (NMJs). Here, we show that Lynx1 is expressed in skeletal muscles, increases during development, and concentrates at NMJs. We also demonstrate that Lynx1 interacts with muscle-specific nAChR subunits. Additionally, we present data indicating that Lynx1 deletion alters the response of skeletal muscles to cholinergic transmission and their contractile properties. Based on these findings, we asked if Lynx1 deletion affects developing and adult NMJs. Loss of Lynx1 had no effect on NMJs at postnatal day 9 (P9) and moderately increased their size at P21. Thus, Lynx1 plays a minor role in the structural development of NMJs. In 7- and 12-month-old mice lacking Lynx1, there is a marked increase in the incidence of NMJs with age- and disease-associated morphological alterations. The loss of Lynx1 also reduced the size of adult muscle fibers. Despite these effects, Lynx1 deletion did not alter the rate of NMJ reinnervation and stability following motor axon injury. These findings suggest that Lynx1 is not required during fast remodeling of the NMJ, as is the case during reformation following crushing of motor axons and development. Instead, these data indicate that the primary role of Lynx1 may be to maintain the structure and function of adult and aging NMJs.

17.
J Neurosci ; 30(35): 11870-82, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810906

RESUMO

In the nervous system, the induction of plasticity is coded by patterns of synaptic activity. Glial cells are now recognized as dynamic partners in a wide variety of brain functions, including the induction and modulation of various forms of synaptic plasticity. However, it appears that glial cells are usually activated by stereotyped, sustained neuronal activity, and little attention has been given to more subtle changes in the patterns of synaptic activation. To this end, we used the mouse neuromuscular junction as a simple and useful model to study glial modulation of synaptic plasticity. We used two patterns of motor nerve stimulation that mimic endogenous motor-neuronal activity. A continuous stimulation induced a post-tetanic potentiation and a phasic Ca(2+) response in perisynaptic Schwann cells (PSCs), glial cells at this synapse. A bursting pattern of activity induced a post-tetanic depression and oscillatory Ca(2+) responses in PSCs. The different Ca(2+) responses in PSCs indicate that they decode the pattern of synaptic activity. Furthermore, the chelation of glial Ca(2+) impaired the production of the sustained plasticity events indicating that PSCs govern the outcome of synaptic plasticity. The mechanisms involved were studied using direct photo-activation of PSCs with caged Ca(2+) that mimicked endogenous plasticity. Using specific pharmacology and transgenic knock-out animals for adenosine receptors, we showed that the sustained depression was mediated by A1 receptors while the sustained potentiation is mediated by A(2A) receptors. These results demonstrate that glial cells decode the pattern of synaptic activity and subsequently provide bidirectional feedback to synapses.


Assuntos
Neurônios Motores/fisiologia , Neuroglia/fisiologia , Junção Neuromuscular/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Estimulação Elétrica/métodos , Masculino , Camundongos , Camundongos Knockout
18.
Front Neurosci ; 15: 724307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630013

RESUMO

RNA binding proteins (RBPs) play a key role in cellular growth, homoeostasis and survival and are tightly regulated. A deep understanding of their spatiotemporal regulation is needed to understand their contribution to physiology and pathology. Here, we have characterized the spatiotemporal expression pattern of hnRNP A1 and its splice variant hnRNP A1B in mice. We have found that hnRNP A1B expression is more restricted to the CNS compared to hnRNP A1, and that it can form an SDS-resistant dimer in the CNS. Also, hnRNP A1B expression becomes progressively restricted to motor neurons in the ventral horn of the spinal cord, compared to hnRNP A1 which is more broadly expressed. We also demonstrate that hnRNP A1B is present in neuronal processes, while hnRNP A1 is absent. This finding supports a hypothesis that hnRNP A1B may have a cytosolic function in neurons that is not shared with hnRNP A1. Our results demonstrate that both isoforms are differentially expressed across tissues and have distinct localization profiles, suggesting that the two isoforms may have specific subcellular functions that can uniquely contribute to disease progression.

19.
J Physiol ; 588(Pt 7): 1039-56, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20142269

RESUMO

Evidence showing the ability of glial cells to detect, respond to and modulate synaptic transmission and plasticity has contributed to the notion of glial cells as active synaptic partners. However, synaptically induced plasticity of glia themselves remains ill defined. Here we used the amphibian neuromuscular junction (NMJ) to study plasticity of perisynaptic Schwann cells (PSCs), glial cells at this synapse, following long-term in vivo modifications of synaptic activity. We used two models that altered synaptic activity in different manners. First, chronic blockade of postsynaptic nicotinic receptors using alpha-bungarotoxin (alpha-BTx) decreased facilitation, increased synaptic depression and decreased post-tetanic potentiation (PTP). Second, chronic nerve stimulation increased facilitation and resistance to synaptic depression, while leaving PTP unaltered. Our results indicate that there is no direct relationship between transmitter release and PSC calcium responses. Indeed, despite changes in transmitter release and plasticity in stimulated NMJs, nerve-evoked PSC calcium responses were similar to control. Similarly, PSC calcium responses in alpha-BTx treated NMJs were delayed and smaller in amplitude, even though basal level of transmitter release was increased. Also, when isolating purinergic and muscarinic components of PSC calcium responses, we found an increased sensitivity to ATP and a decreased sensitivity to muscarine in chronically stimulated NMJs. Conversely, in alpha-BTx treated NMJs, PSC sensitivity remained unaffected, but ATP- and muscarine-induced calcium responses were prolonged. Thus, our results reveal complex modifications of PSC properties, with differential modulation of signalling pathways that might underlie receptor regulation or changes in Ca(2+) handling. Importantly, similar to neurons, perisynaptic glial cells undergo plastic changes induced by altered synaptic activity.


Assuntos
Plasticidade Neuronal/fisiologia , Células de Schwann/fisiologia , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Bungarotoxinas/farmacologia , Cálcio/metabolismo , Estimulação Elétrica , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Rana pipiens , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/fisiologia , Receptores Purinérgicos/efeitos dos fármacos , Receptores Purinérgicos/fisiologia , Células de Schwann/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos
20.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32033983

RESUMO

Progressive loss of neuromuscular junctions (NMJs) is an early event in amyotrophic lateral sclerosis (ALS), preceding the global degeneration of motor axons and being accompanied by new axonal sprouting within the same axonal arbor. Some aspects of ALS onset and progression seem to be affected by sex in animal models of the disease. However, whether there are sex-specific differences in the pattern or time course of NMJ loss and repair within single motor axons remains unknown. We performed further analysis of a previously published in vivo dataset, obtained from male and female SOD1G37R mice. We found that NMJ losses are as frequent in male and female motor axons but, intriguingly, axonal sprouting is more frequent in female than male mice, resulting in a net increase of axonal arborization. Interestingly, these numerous new axonal branches in female mice are associated with a slightly faster decline in grip strength, increased NMJ denervation, and reduced α-motor neuron survival. Collectively, these results suggest that excessive axonal sprouting and motor-unit (MU) expansion in female SOD1G37R mice are maladaptive during ALS progression.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores , Junção Neuromuscular , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA