Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(48): 21431-21435, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32686308

RESUMO

A new family of robust, non-toxic, water-compatible ruthenium(II) vinyl probes allows the rapid, selective and sensitive detection of endogenous carbon monoxide (CO) in live mammalian cells under normoxic and hypoxic conditions. Uniquely, these probes incorporate a viscosity-sensitive BODIPY fluorophore that allows the measurement of microscopic viscosity in live cells via fluorescence lifetime imaging microscopy (FLIM) while also monitoring CO levels. This is the first example of a probe that can simultaneously detect CO alongside small viscosity changes in organelles of live cells.


Assuntos
Compostos de Boro/química , Monóxido de Carbono/análise , Complexos de Coordenação/química , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Estrutura Molecular , Imagem Óptica , Viscosidade
2.
Chemistry ; 25(62): 14214-14222, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31452291

RESUMO

A series of new ruthenium(II) vinyl complexes has been prepared incorporating perylenemonoimide (PMI) units. This fluorogenic moiety was functionalised with terminal alkyne or pyridyl groups, allowing attachment to the metal either as a vinyl ligand or through the pyridyl nitrogen. The inherent low solubility of the perylene compounds was improved through the design of poly-PEGylated (PEG=polyethylene glycol) units bearing a terminal alkyne or a pyridyl group. By absorbing the compounds on silica, vapours and gases could be detected in the solid state. The reaction of the complexes [Ru(CH=CH-PerIm )Cl(CO)(py-3PEG)(PPh3 )2 ] and [Ru(CH=CH-3PEG)Cl(CO)(py-PerIm )(PPh3 )2 ] with carbon monoxide, isonitrile or cyanide was found to result in modulation of the fluorescence behaviour. The complexes were observed to display solvatochromic effects and the interaction of the complexes with a wide range of other species was also studied. The study suggests that such complexes have potential for the detection of gases or vapours that are toxic to humans.


Assuntos
Monóxido de Carbono/análise , Cianetos/análise , Corantes Fluorescentes/química , Imidas/química , Nitrilas/análise , Perileno/análogos & derivados , Rutênio/química , Alcinos/química , Monóxido de Carbono/toxicidade , Complexos de Coordenação/química , Cianetos/toxicidade , Nitrilas/toxicidade , Perileno/química , Piridinas/química
3.
Chemistry ; 25(8): 2069-2081, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30468549

RESUMO

Optical sensing offers a low-cost and effective means to sense carbon monoxide in air and in solution. This contribution reports the synthesis of a new series of vinyl complexes [Ru(CH=CHR)Cl(CO)(TBTD)(PPh3 )2 ] (R=aryl, TBTD=5-(3-thienyl)-2,1,3-benzothiadiazole) and shows them to be highly sensitive and selective probes for carbon monoxide in both solution and air. Depending on the vinyl substituent, chromogenic and fluorogenic responses signalled the presence of this invisible, odourless, tasteless and toxic gas. Adsorbing the complexes on silica produced colorimetric probes for the 'naked eye' detection of CO in the gas phase with a limit of detection as low as 8 ppm in some cases, while the release of the TBTD fluorophore allowed detection at much lower concentrations through the fluorescence response. Structural data were obtained by single-crystal X-ray diffraction techniques, while the photophysical behaviour was explored computationally using TD-DFT experiments. The systems were also shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. By introducing a poly(ethylene)glycol chain to the vinyl functionality, water compatibility was achieved and these non-cytotoxic complexes were employed in the sensing of CO in HeLa cells, offering a simple and rapid system for sensing this gasotransmitter in this challenging medium.

4.
J Am Chem Soc ; 139(51): 18484-18487, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29182272

RESUMO

A two-photon fluorescent probe based on a ruthenium(II) vinyl complex is capable of selectively detecting carbon monoxide in cells and ex vivo using mice with a subcutaneous air pouch as a model for inflammation. This probe combines highly selective and sensitive ex vivo detection of endogenous CO in a realistic model with facile, inexpensive synthesis, and displays many advantages over the widely used palladium-based systems.

5.
Inorg Chem ; 55(24): 12982-12996, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989205

RESUMO

The disulfide ligand (SC6H4CO2H-4)2 acts as a simple but versatile linker for a range of group 8 transition metals through reaction of the oxygen donors. This leads to a range of homobimetallic ruthenium and osmium alkenyl compounds, [{M(CH═CHR)(CO)(PPh3)2(O2CC6H4S-4)}2] (M = Ru, Os; R = C6H4Me-4). Additional metal-based functionality can be added through the use of precursors incorporating rhenium bipyridine units (R = (bpy)ReCl(CO)3). The more robust diphosphine ligands in [{Ru(dppm)2(O2CC6H4S-4)}2]2+ (dppm = diphenylphosphinomethane) allow reduction of the disulfide bond with sodium borohydride to yield the thiol complex [Ru(O2CC6H4SH-4)(dppm)2]+. This complex reacts with [AuCl(PPh3)] to afford the bimetallic compound [Ru(dppm)2(O2CC6H4S-4)Au(PPh3)]+. However, an improved route to the same and related heterobimetallic compounds is provided by the reaction of cis-[RuCl2(dppm)2] with [Au(SC6H4CO2H-4)(L)] (L = PPh3, PCy3, PMe3, IDip) in the presence of base and NH4PF6 (IDip = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). The heterotrimetallic compound [Au(SC6H4CO2Ru(dppm)2)2]+ is accessible through the reaction of the homoleptic gold(I) dithiolate [Au(SC6H4CO2H-4)2]PPN (PPN = bis(triphenylphosphine)iminium) with cis-[RuCl2(dppm)2]. Without departure from the same methodology, greater complexity can be incorporated into the system to provide the penta- and heptametallic assemblies [(dppf){AuSC6H4CO2Ru(dppm)2}2]2+ and [(dppf){AuSC6H4CO2Os(CH═CH-bpyReCl(CO)3)(CO)(PPh3)2}2]. The same stepwise approach provides the dinuclear organometallic complexes [(L)Au(SC6H4CO2-4)M(CH═CHC6H4Me-4)(CO)(PPh3)2] (M = Ru, Os; L = PPh3, IDip). Complexes containing three metals from different groups of the periodic table [(L)Au(SC6H4CO2-4)M{CH═CH-bpyReCl(CO)3}(CO)(PPh3)2] (M = Ru, Os) can also be prepared, with one ruthenium example (L = PPh3) being structurally characterized. In order to illustrate the versatility of this approach, the synthesis and characterization (IR and NMR spectroscopy, TEM, EDS, and TGA) of the functionalized gold and palladium nanoparticles Au@[SC6H4CO2Ru(dppm)2]+ and Pd@[SC6H4CO2Ru(dppm)2]+ is reported.

6.
Curr Radiopharm ; 14(2): 101-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32895047

RESUMO

BACKGROUND: One of the challenges in positron emission tomography (PET) is labelling complex aliphatic molecules. OBJECTIVE: This study aimed to develop a method of metal-catalysed radiofluorination that is site-selective and works in moderate to good yields under facile conditions. METHODS: Herein, we report on the optimisation of an aliphatic C-H to C-18F bond transformation catalysed by a Mn(porphyrin) complex. RESULTS: The successful oxidation of 11 aliphatic molecules, including progesterone, is reported. Radiochemical Incorporations (RCIs) up to 69% were achieved within 60 min without the need for pre-activation or special equipment. CONCLUSION: The method features mild conditions (60 °C) and promises to constitute a valuable approach to labelling of biomolecules and drug substances.


Assuntos
Radioisótopos de Flúor/química , Manganês/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Humanos , Radioquímica , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade
7.
Dalton Trans ; 46(17): 5558-5570, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872923

RESUMO

The versatile rhenium complex [ReCl(CO)3(bpyC[triple bond, length as m-dash]CH)] (HC[triple bond, length as m-dash]Cbpy = 5-ethynyl-2,2'-bipyridine) is used to generate a series of bimetallic complexes through the hydrometallation of [MHCl(CO)(BTD)(PPh3)2] (M = Ru, Os; BTD = 2,1,3-benzothiadiazole). The ruthenium complex [Ru{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}Cl(BTD)(CO)(PPh3)2] was characterised structurally. Ligand exchange reactions with bifunctional linkers bearing oxygen and sulfur donors provide access to tetra- and pentametallic complexes such as [{M{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}(CO)(PPh3)2}2(S2CNC4H8NCS2)] and Fe[C5H4CO2M{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}(CO)(PPh3)2]2. The effect of the group 8 metal on the photophysical properties of the rhenium centre was investigated using the complexes [Ru{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}Cl(BTD)(CO)(PPh3)2] and [M{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}{S2P(OEt)2}(CO)(PPh3)2] (M = Ru, Os). This revealed the quenching of the rhenium-based emission in favour of weak radiative processes based on the Ru and Os centres. The potential for exploiting this effect is illustrated by the reaction of [Ru{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}Cl(CO)(BTD)(PPh3)2] with carbon monoxide, which results in a 5-fold fluorescence enhancement in the dicarbonyl product, [Ru{CH[double bond, length as m-dash]CH-bpyReCl(CO)3}Cl(CO)2(PPh3)2], as the quenching effect is disrupted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA