Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257246

RESUMO

Although the impacts of plastic pollution have long been recognized, the presence, pervasiveness, and ecotoxicological consequences of microplastic-i.e., plastic particles < 5 mm-contamination have only been explored over the last decade. Far less focus has been attributed to the role of these materials and, particularly, microplastics, as vectors for a multitude of chemicals, including those (un)intentionally added to plastic products, but also organic pollutants already present in the environment. Owing to the ubiquitous presence of microplastics in all environmental matrices and to the diverse nature of their chemical and physical characteristics, thoroughly understanding the mechanistic uptake/release of these compounds is inherently complex, but necessary in order to better assess the potential impacts of both microplastics and associated chemicals on the environment. Herein, we delve into the known processes and factors affecting these mechanisms. We center the discussion on microplastics and discuss some of the most prominent ecological implications of the sorption of this multitude of chemicals. Moreover, the key limitations of the currently available literature are described and a prospective outlook for the future research on the topic is presented.

2.
Chem Eng J ; 426: 131201, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35791349

RESUMO

Landfilling and illegal waste disposal have risen to deal with the COVID-19 potentially infectious waste, particularly in developing countries, which aggravates plastic pollution and inherent environmental threats to human and animal health. It is estimated that 3.5 million metric tonnes of masks (equivalent to 601 TIR containers) have been landfilled worldwide in the first year, with the potential to increase global plastic municipal solid waste by 3.5%, alter biogas composition, and release 2.3 × 1021 microplastics to leachates or adjacent environments, in the coming years. This paper reviews the challenges raised in the pandemic scenario on landfills and discusses the potential environmental and health implications that might drive us apart from the 2030 U.N. sustainable goals. Also, it highlights some innovative technologies to improve waste management (from collection to disposal, waste reduction, sterilization) and mitigates plastic leakage (emission control approaches, application of biotechnological and monitoring/computational tools) that can pave the way to environmental recovery. COVID-19 will eventually subside, but if no action is taken in the short-term towards effective plastic policies, replacement of plastics for sustainable alternatives (e.g., biobased plastics), improvement of waste management streams (prioritising flexible and decentralized approaches), and a greater awareness and responsibility of the general public, stakeholders, industries; we will soon reach a tipping-point in natural environments worldwide.

3.
Chem Eng J ; 405: 126683, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834764

RESUMO

Plastics have become a severe transboundary threat to natural ecosystems and human health, with studies predicting a twofold increase in the number of plastic debris (including micro and nano-sized plastics) by 2030. However, such predictions will likely be aggravated by the excessive use and consumption of single-use plastics (including personal protective equipment such as masks and gloves) due to COVID-19 pandemic. This review aimed to provide a comprehensive overview on the effects of COVID-19 on macroplastic pollution and its potential implications on the environment and human health considering short- and long-term scenarios; addressing the main challenges and discussing potential strategies to overcome them. It emphasises that future measures, involved in an emergent health crisis or not, should reflect a balance between public health and environmental safety as they are both undoubtedly connected. Although the use and consumption of plastics significantly improved our quality of life, it is crucial to shift towards sustainable alternatives, such as bio-based plastics. Plastics should remain in the top of the political agenda in Europe and across the world, not only to minimise plastic leakage and pollution, but to promote sustainable growth and to stimulate both green and blue- economies. Discussions on this topic, particularly considering the excessive use of plastic, should start soon with the involvement of the scientific community, plastic producers and politicians in order to be prepared for the near future.

4.
Environ Sci Technol ; 54(13): 7760-7765, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32531154

RESUMO

Plastics are essential in society as a widely available and inexpensive material. Mismanagement of personal protective equipment (PPE) during the COVID-19 pandemic, with a monthly estimated use of 129 billion face masks and 65 billion gloves globally, is resulting in widespread environmental contamination. This poses a risk to public health as waste is a vector for SARS-CoV-2 virus, which survives up to 3 days on plastics, and there are also broad impacts to ecosystems and organisms. Concerns over the role of reusable plastics as vectors for SARS-CoV-2 virus contributed to the reversal of bans on single-use plastics, highly supported by the plastic industry. While not underestimating the importance of plastics in the prevention of COVID-19 transmission, it is imperative not to undermine recent progress made in the sustainable use of plastics. There is a need to assess alternatives that allow reductions of PPE and reinforce awareness on the proper public use and disposal. Finally, assessment of contamination and impacts of plastics driven by the pandemic will be required once the outbreak ends.


Assuntos
Infecções por Coronavirus , Transmissão de Doença Infecciosa do Paciente para o Profissional , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Ecossistema , Humanos , Plásticos , SARS-CoV-2
5.
Ecotoxicol Environ Saf ; 200: 110753, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450440

RESUMO

Plastics and microplastics are ubiquitous contaminants in aquatic ecosystems. This critical review is the first attempt at analyzing sources, concentration, impacts and solutions of (micro)plastic litter in Portugal based on all currently available literature. We found that, besides sea-based sources (e.g. shipping, fishing), 5717 t of mismanaged waste and 4.1 trillion microplastics from wastewater, mostly from untreated wastewater, are released to the environment every year. The highest concentrations are found in the North, Center and Lisbon regions, mostly comprised of consumer products, fishing gear and microplastics (<5 mm), especially fragments and pellets. This contamination has resulted in ingestion of plastics by organisms, including mussels, fishes, birds and turtles. Thus, every Portuguese citizen may consume 1440 microplastics a year based on the consumption of mollusks. Awareness campaigns, improvements in waste management and reductions in the release of untreated wastewater are recommended measures to reduce plastic pollution in Portugal.


Assuntos
Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Aves , Bivalves , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Microplásticos/toxicidade , Portugal , Tartarugas , Gerenciamento de Resíduos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
6.
Mar Drugs ; 17(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987249

RESUMO

Seaweeds, which have been widely used for human consumption, are considered a potential source of biological compounds, where enzyme-assisted extraction can be an efficient method to obtain multifunctional extracts. Chemical characterization of Sargassum muticum and Osmundea pinnatifida extracts obtained by Alcalase and Viscozyme assisted extraction, respectively, showed an increment of macro/micro elements in comparison to the corresponding dry seaweeds, while the ratio of Na/K decreased in both extracts. Galactose, mannose, xylose, fucose, and glucuronic acid were the main monosaccharides (3.2-27.3 mg/glyophilized extract) present in variable molar ratios, whereas low free amino acids content and diversity (1.4-2.7 g/100gprotein) characterized both extracts. FTIR-ATR and 1H NMR spectra confirmed the presence of important polysaccharide structures in the extracts, namely fucoidans from S. muticum or agarans as sulfated polysaccharides from O. pinnatifida. No cytotoxicity against normal mammalian cells was observed from 0 to 4 mglyophilized extract/mL for both extracts. The comprehensive characterization of the composition and safety of these two extracts fulfils an important step towards their authorized application for nutritional and/or nutraceutical purposes.


Assuntos
Suplementos Nutricionais , Extratos Vegetais/química , Rodófitas/química , Sargassum/química , Alga Marinha/química , Animais , Linhagem Celular , Fibroblastos , Camundongos , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/toxicidade , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Subtilisinas/metabolismo , Testes de Toxicidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-29346015

RESUMO

This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.


Assuntos
Nanoestruturas/química , Quercus/química , Indústria Têxtil , Titânio/química , Poluentes Químicos da Água/farmacocinética , Purificação da Água/métodos , Adsorção , Animais , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cor , Corantes/isolamento & purificação , Corantes/farmacocinética , Corantes/farmacologia , Daphnia/efeitos dos fármacos , Resíduos Industriais/análise , Têxteis/análise , Testes de Toxicidade Aguda , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29624466

RESUMO

Microplastic contamination of aquatic environments has become an increasingly alarming problem. These, defined as particles <5 mm, are mostly formed due to the cracking and embrittlement of larger plastic particles. Recent reports show that the increasing presence of microplastics in the environment could have significant deleterious consequences over the health of marine organisms, but also across the food chain. Herein, we have studied the effects of artificial seawater on polyethylene (PE)-based beads by exposing them up to eight weeks to saltwater in stirred batch reactors in the dark and examined the structural and morphological changes these endured. Electron microscopy observations showed that artificial seawater induces severe microcracking of the pellets' surfaces. Additionally, Fourier transform infrared spectroscopy (FTIR) analyses evidenced the formation of oxidized groups whenever these particles were exposed to water and an increase in organic matter content of the waters in which the pellets were kept was evidenced by Raman spectroscopy. There were also noticeable consequences in the thermal stability of the polyethylene pellets, as determined by thermogravimetric studies (TGA). Furthermore, the parallel exposure of polyethylene pellets to UV radiation yielded less pronounced effects, thus underscoring its lower preponderance in the degradation of this material. These results highlight the importance of determining the mechanisms of degradation of microplastics in marine settings and what the implications may be for the environment. Overall, the herein presented results show that a relatively short period of time of accelerated exposure can yield quantifiable chemical and physical impacts on the structural and morphological characteristics of PE pellets.


Assuntos
Plásticos/análise , Plásticos/farmacocinética , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Animais , Organismos Aquáticos/química , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Estabilidade de Medicamentos , Monitoramento Ambiental/métodos , Polietileno/análise , Polietileno/farmacocinética , Polímeros/análise , Polímeros/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Sensors (Basel) ; 17(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244756

RESUMO

The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Poluentes Ambientais , Humanos , Nanotecnologia , Praguicidas
11.
Artigo em Inglês | MEDLINE | ID: mdl-28598770

RESUMO

In recent years, emerging contaminants (e.g. pesticides and their metabolites, pharmaceuticals, personal and house care products, life-style compounds, food additives, industrial products and wastes, as well as nanomaterials) have become a problem to the environment. In fact, the cumulative use of a panoply of chemical substances in agriculture, industrial activities, in our homes and in health care services has led to their recent appearance in detectable levels in soils, surface, and groundwater resources, with unpredictable consequences for these ecosystems. Few data exist regarding the toxicity and potential for bioaccumulation in biota. When available, data were obtained only for some representatives of the main groups of chemical substances, and for a limited number of species, following non-standard protocols. This makes difficult the calculation of predicted no effect concentrations (PNEC) and the existence of sufficient data to set limits for their release into the environment. This is particularly concerning for the soil compartment, since only recently the scientific community, regulators, and the public have realised the importance of protecting this natural resource and its services to guarantee the sustainability of terrestrial ecosystems and human well-being. In this context, this review paper aims to identify the major groups of soil emerging contaminants, their sources, pathways and receptors, and in parallel to analyse existing ecotoxicological data for soil biota.


Assuntos
Biota/efeitos dos fármacos , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Solo/química , Ecossistema , Ecotoxicologia , Humanos , Microbiologia do Solo/normas
12.
Trends Analyt Chem ; 85: 36-60, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32287540

RESUMO

Sensors and biosensors have been increasingly used for clinical analysis due to their miniaturization and portability, allowing the construction of diagnostic devices for point-of-care testing. This paper presents an up-to-date overview and comparison of the analytical performance of sensors and biosensors recently used in clinical analysis. This includes cancer and cardiac biomarkers, hormones, biomolecules, neurotransmitters, bacteria, virus and cancer cells, along with related significant advances since 2011. Some methods of enhancing the analytical performance of sensors and biosensors through their figures of merit are also discussed.

13.
Appl Microbiol Biotechnol ; 100(19): 8283-302, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27550218

RESUMO

There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.


Assuntos
Biotecnologia/métodos , Nanopartículas Metálicas , Semicondutores , Sulfetos/metabolismo , Bactérias/metabolismo , Biotecnologia/tendências , Precipitação Química
14.
Ecotoxicol Environ Saf ; 129: 291-301, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27060256

RESUMO

The huge evolution of nanotechnology and the commercialization of nanomaterials (NMs) positively contributed for innovation in several industrial sectors. Facing this rapid development and the emergence of NMs in the market, the release of this nanometric sized materials in the environment and the possible impact on different ecosystem components attracted the attention of researchers in the last few years. In our study we aimed to assess the impact of titanium silicon oxide nanomaterial (nano-TiSiO4) on soil biota to estimate a risk limit for this material. In the present research a battery of standardized ecotoxicological assays aimed at evaluating a wide range of endpoints (avoidance and reproduction of earthworms and collembolans, emergence/growth of four selected terrestrial plants) were carried out, using OECD artificial soil as test substrate spiked with aqueous suspension of different concentrations of nano-TiSiO4. The results showed a maximum avoidance percentage of 40% for earthworms (Esenia andrei) at the highest concentration tested (1000mgkg(-1) soildw of nano-TiSiO4). No significant effect on the reproductive function of both invertebrate species was recorded. Nevertheless, significant phytotoxic data was registered at least for the growth of dicotyledonous plant species (Lactuca sativa and Lycopersicon lycopersicum) with EC20 values ranging between 236 and 414 mg kg(-1) soildw of nano-TiSiO4 for L. sativa dry mass and fresh mass, respectively. Further, the characterization of nano-TiSiO4 in suspensions used to spike the soil, performed by Dynamic Light Scattering, showed the formation of aggregates with important average size diameter, thus demonstrating that the toxic effects observed were likely not size dependent. A deterministic PNEC (predicted no effect concentration) for this NM of 10.02mg kg(-1) soildw of nano-TiSiO4, is suggested, while no more ecotoxicological information exists.


Assuntos
Lactuca/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Dióxido de Silício/toxicidade , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Titânio/toxicidade , Animais , Bioensaio , Ecossistema , Ecotoxicologia , Lactuca/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Nanoestruturas/química , Oligoquetos/metabolismo , Reprodução/efeitos dos fármacos , Dióxido de Silício/química , Poluentes do Solo/química , Titânio/química
15.
Arch Environ Contam Toxicol ; 67(4): 601-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24823679

RESUMO

As part of a tier 3 risk assessment performed for a uranium mining area, the ability of soils with different degrees of metal contamination to degrade organic matter was assessed using litter bags filled with leaves of Quercus robur, Pinus pinaster, Salix atrocinerea, or a mixture of the three species. Litter bags were exposed at different sites within the mine area and at a reference area for 3, 6, 9, and 12 months. Biomass loss, nitrogen (N), phosphorus (P), carbon (C) and total fatty acid, total phenolic, and ergosterol contents were assessed for each litter bag retrieved from the field. The decomposition of litter at each site seemed to be governed by a complex interaction of many different factors. After 12 months of exposure, leaves from the most contaminated sites were distinguishable from those from the reference site. In the reference site, the greatest percentages of biomass loss were attained by Q. robur and P. pinaster leaves. These species displayed the second highest and the lowest C-to-N ratios, respectively. In addition, the high P content of the litter from these two species may have favored microbial colonization. The results suggest that the decomposition of P. pinaster and Q. robur leaves may have been favored at the reference site by the high abundance of both species at this site and the subsequent adaptation of the microbial community to their litter. Our study shows that different species of leaf litter should be used to discriminate between contaminated sites with different levels of contamination.


Assuntos
Mineração , Microbiologia do Solo , Poluentes Radioativos do Solo/toxicidade , Urânio/toxicidade , Carbono/análise , Ecossistema , Nitrogênio/análise , Fósforo/análise , Solo/química
16.
Sci Total Environ ; 935: 173334, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763191

RESUMO

Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.


Assuntos
Biodegradação Ambiental , Resíduo Eletrônico , Microplásticos , Penicillium , Penicillium/metabolismo , Microplásticos/metabolismo
17.
Sci Total Environ ; 912: 169287, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38103621

RESUMO

The application of bio-based biodegradable mulch films in agriculture has raised environmental concerns regarding their potential impacts on adjacent freshwater ecosystems. This study investigated the biodegradation of microplastics derived from a bio-based biodegradable mulch (bio-MPs) and its acute and chronic ecotoxicity considering relevant scenarios (up to 200 and 250 mg/kg of sediment, using pristine and/or UV-aged particles), using the fungus Penicillium brevicompactum and the dipteran Chironomus riparius as model organisms, respectively, due to their ecological relevance in freshwater environments. Fourier-transform infrared spectroscopy analysis suggested changes in the fungus's carbohydrate reserves and bio-MP degradation through the appearance of low molecular weight esters throughout a 28 day biodegradation test. In a short-term exposure (48 h), C. riparius larvae exposed to pristine or UV-aged bio-MPs had up to 2 particles in their gut. Exposure to pristine bio-MPs decreased larval aerobic metabolism (<20 %) and increased neurotransmission (>15 %), whereas exposure to UV-aged bio-MPs activated larval aerobic metabolism (>20 %) and increased antioxidant defences (catalase activity by >30 % and glutathione-s-transferase by >20 %) and neurotransmission (>30 %). Longer-term (28-d) exposure to UV-aged bio-MPs did not affect larval survival and growth nor the dipteran's emergence but increased male numbers (>30 %) at higher concentrations. This study suggests that the selected agricultural bio-based mulch film is prone to biodegradation by a naturally occurring fungus. However, there is a potential for endocrine disruption in the case of prolonged exposures to UV-aged microplastics. This study emphasises the importance of further research to elucidate the potential ecological effects of these plastic products, to ensure effective management practices, and to establish new regulations governing their use.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Agricultura , Larva , Água Doce
18.
Trends Analyt Chem ; 47: 27-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32287538

RESUMO

We provide a state-of-the-art review of the main strategies for the enhancement of analytical performance of sensors using nanomaterials, particularly nanowires and carbon-based materials. We emphasize the way to overcome the problem of device-to-device variation. We discuss the study of the influence of nanomaterial characteristics, sensor dimensions and operational conditions on sensing performance, and the application of appropriate calibration models.

19.
Artigo em Inglês | MEDLINE | ID: mdl-23043338

RESUMO

This study attempts a treatment strategy of a bleached kraft pulp mill effluent with Rhizopus oryzae or Pleurotus sajor caju encapsulated on silica-alginate (biocomposite of silica-alginate-fungi, with the purpose of reducing its potential impact in the environment. Active (alive) or inactive (death by sterilization) Rhizopus oryzae or Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the bleached kraft pulp mill effluent. The treatment of bleached kraft pulp mill effluent by active and inactive biocomposites was performed throughout 29 days at 28°C. The efficiency of treatment was evaluated by measuring the removal of organic compounds, chemical oxygen demand and the relative absorbance ratio over time. Both fungi species showed potential for removal of organic compounds, colour and chemical oxygen demand. Maximum values of reduction in terms of colour (56%), chemical oxygen demand (65%) and organic compounds (72-79%) were attained after 29 days of treatment of bleached kraft pulp mill effluent by active Rhizopus oryzae biocomposites. The immobilization of fungi, the need for low fungal biomass, and the possibility of reutlization of the biocomposites clearly demonstrate the industrial and environmental interest in bleached kraft pulp mill effluent treatment by silica-alginate-fungi biocomposites.


Assuntos
Reatores Biológicos/microbiologia , Compostos Orgânicos/metabolismo , Pleurotus/metabolismo , Rhizopus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Alginatos/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Resíduos Industriais , Dióxido de Silício/química , Extração em Fase Sólida , Espectrofotometria , Fatores de Tempo
20.
AAPS PharmSciTech ; 14(1): 121-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233282

RESUMO

Alternative vectors to deliver viable cells of probiotics, to those conferring limited resistance to gastrointestinal conditions, still need to be sought. Therefore the main goal of the study was to develop tablets able to protect entrapped probiotic bacteria from gastric acidity, thus providing an easily manufacturing scale-up dosage form to deliver probiotics to the vicinity of the human colon. Whey protein concentrate microparticles with Lactobacillus paracasei L26 were produced by spray-drying and incorporated in tablets with cellulose acetate phthalate and sodium croscarmellose. The viability of L. paracasei L.26 throughout tableting as well as its gastric resistance and release from the tablets were evaluated. Storage stability of L. paracasei L26 tablets was also performed by evaluation of viable cells throughout 60 days at 23°C and 33% relative humidity. A decrease of approximately one logarithmic cycle was observed after the acid stage and the release of L. paracasei L26 from the tablets occurred only after 4 h in the conditions tested. Microencapsulated L. paracasei L26 in tablets revealed some susceptibility to the storage conditions tested since the number of viable cells decreased 2 log cycles after 60 days of storage. However, the viability of L. paracasei L26 after 45 days of storage did not reveal significant susceptibility upon exposure to simulated gastrointestinal conditions. The developed probiotic tablets revealed to be potential vectors for delivering viable cells of L. paracasei L26 and probably other probiotics to persons/patients who might benefit from probiotic therapy.


Assuntos
Lactobacillus , Probióticos , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA