Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 510(7505): 393-6, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24870234

RESUMO

A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G0 and an 'alert' phase we term G(Alert). Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G0 into G(Alert) and that signalling through the HGF receptor cMet is also necessary. We also identify G0-to-G(Alert) transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G(Alert) possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G(Alert) functions as an 'alerting' mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.


Assuntos
Ciclo Celular/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/citologia , Fase de Repouso do Ciclo Celular/fisiologia , Células Satélites de Músculo Esquelético/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Fase de Repouso do Ciclo Celular/genética , Células Satélites de Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/genética
2.
Nature ; 508(7495): 258-62, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717514

RESUMO

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.


Assuntos
Dieta , Nicotinamida N-Metiltransferase/deficiência , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/enzimologia , Obesidade/prevenção & controle , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Fígado Gorduroso , Técnicas de Silenciamento de Genes , Intolerância à Glucose , Transportador de Glucose Tipo 4/deficiência , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/genética , Obesidade/etiologia , Obesidade/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , S-Adenosilmetionina/metabolismo , Sirtuína 1/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Magreza/enzimologia , Magreza/metabolismo , Poliamina Oxidase
3.
Mol Cell ; 41(4): 471-9, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329884

RESUMO

Akt mediates important cellular decisions involved in growth, survival, and metabolism. The mechanisms by which Akt is phosphorylated and activated in response to growth factors or insulin have been extensively studied, but the molecular regulatory components and dynamics of Akt attenuation are poorly understood. Here we show that a downstream target of insulin-induced Akt activation, Clk2, triggers Akt dephosphorylation through the PP2A phosphatase complex. Clk2 phosphorylates the PP2A regulatory subunit B56ß (PPP2R5B, B'ß), which is a critical regulatory step in the assembly of the PP2A holoenzyme complex on Akt leading to dephosphorylation of both S473 and T308 Akt sites. Since Akt plays a pivotal role in cellular signaling, these results have important implications for our understanding of Akt regulation in many biological processes.


Assuntos
Insulina/metabolismo , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transfecção
4.
Genes Dev ; 24(13): 1403-17, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20595232

RESUMO

The sterol regulatory element-binding protein (SREBP) transcription factor family is a critical regulator of lipid and sterol homeostasis in eukaryotes. In mammals, SREBPs are highly active in the fed state to promote the expression of lipogenic and cholesterogenic genes and facilitate fat storage. During fasting, SREBP-dependent lipid/cholesterol synthesis is rapidly diminished in the mouse liver; however, the mechanism has remained incompletely understood. Moreover, the evolutionary conservation of fasting regulation of SREBP-dependent programs of gene expression and control of lipid homeostasis has been unclear. We demonstrate here a conserved role for orthologs of the NAD(+)-dependent deacetylase SIRT1 in metazoans in down-regulation of SREBP orthologs during fasting, resulting in inhibition of lipid synthesis and fat storage. Our data reveal that SIRT1 can directly deacetylate SREBP, and modulation of SIRT1 activity results in changes in SREBP ubiquitination, protein stability, and target gene expression. In addition, chemical activators of SIRT1 inhibit SREBP target gene expression in vitro and in vivo, correlating with decreased hepatic lipid and cholesterol levels and attenuated liver steatosis in diet-induced and genetically obese mice. We conclude that SIRT1 orthologs play a critical role in controlling SREBP-dependent gene regulation governing lipid/cholesterol homeostasis in metazoans in response to fasting cues. These findings may have important biomedical implications for the treatment of metabolic disorders associated with aberrant lipid/cholesterol homeostasis, including metabolic syndrome and atherosclerosis.


Assuntos
Regulação para Baixo , Jejum/fisiologia , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Acetilação , Animais , Benzamidas/farmacologia , Caenorhabditis elegans , Linhagem Celular , Colesterol/biossíntese , Regulação para Baixo/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lipídeos/biossíntese , Camundongos , Naftóis/farmacologia , Niacinamida/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores
5.
Nature ; 450(7170): 736-40, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046414

RESUMO

Transcriptional complexes that contain peroxisome-proliferator-activated receptor coactivator (PGC)-1alpha control mitochondrial oxidative function to maintain energy homeostasis in response to nutrient and hormonal signals. An important component in the energy and nutrient pathways is mammalian target of rapamycin (mTOR), a kinase that regulates cell growth, size and survival. However, it is unknown whether and how mTOR controls mitochondrial oxidative activities. Here we show that mTOR is necessary for the maintenance of mitochondrial oxidative function. In skeletal muscle tissues and cells, the mTOR inhibitor rapamycin decreased the gene expression of the mitochondrial transcriptional regulators PGC-1alpha, oestrogen-related receptor alpha and nuclear respiratory factors, resulting in a decrease in mitochondrial gene expression and oxygen consumption. Using computational genomics, we identified the transcription factor yin-yang 1 (YY1) as a common target of mTOR and PGC-1alpha. Knockdown of YY1 caused a significant decrease in mitochondrial gene expression and in respiration, and YY1 was required for rapamycin-dependent repression of those genes. Moreover, mTOR and raptor interacted with YY1, and inhibition of mTOR resulted in a failure of YY1 to interact with and be coactivated by PGC-1alpha. We have therefore identified a mechanism by which a nutrient sensor (mTOR) balances energy metabolism by means of the transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Transativadores/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Complexos Multiproteicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Transcrição YY1/deficiência , Fator de Transcrição YY1/genética
6.
Cell Metab ; 3(2): 77-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16459306

RESUMO

Cellular metabolic rates might regulate aging by impinging on genomic stability through the DNA repair pathways. A new study published in Cell (Mostoslavsky et al., 2006) reports that deficiency in one of the mammalian Sir2 homologs, SIRT6, results in genome instability through the DNA base excision repair pathway and leads to aging-associated degenerative phenotypes.


Assuntos
Envelhecimento/metabolismo , Reparo do DNA/fisiologia , Instabilidade Genômica/fisiologia , Fenótipo , Sirtuínas/metabolismo , Envelhecimento/patologia , Animais , Histona Desacetilases/metabolismo , Longevidade , Camundongos , Modelos Biológicos , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Leveduras
7.
Cell Metab ; 3(6): 429-38, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16753578

RESUMO

Hormonal and nutrient regulation of hepatic gluconeogenesis mainly occurs through modulation of the transcriptional coactivator PGC-1alpha. The identity of endogenous proteins and their enzymatic activities that regulate the functions and form part of PGC-1alpha complex are unknown. Here, we show that PGC-1alpha is in a multiprotein complex containing the acetyltransferase GCN5. PGC-1alpha is directly acetylated by GCN5 resulting in a transcriptionally inactive protein that relocalizes from promoter regions to nuclear foci. Adenoviral-mediated expression of GCN5 in cultured hepatocytes and in mouse liver largely represses activation of gluconeogenic enzymes and decreases hepatic glucose production. Thus, we have identified the endogenous PGC-1alpha protein complex and provided the molecular mechanism by which PGC-1alpha acetylation by GCN5 turns off the transcriptional and biological function of this metabolic coactivator. GCN5 might be a pharmacological target to regulate the activity of PGC-1alpha, providing a potential treatment for metabolic disorders in which hepatic glucose output is dysregulated.


Assuntos
Glucose/metabolismo , Proteínas de Choque Térmico/genética , Histona Acetiltransferases/fisiologia , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Acetilação , Animais , Catálise , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Gluconeogênese/fisiologia , Glucose/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transporte Proteico/fisiologia , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
9.
Nature ; 434(7029): 113-8, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-15744310

RESUMO

Homeostatic mechanisms in mammals respond to hormones and nutrients to maintain blood glucose levels within a narrow range. Caloric restriction causes many changes in glucose metabolism and extends lifespan; however, how this metabolism is connected to the ageing process is largely unknown. We show here that the Sir2 homologue, SIRT1--which modulates ageing in several species--controls the gluconeogenic/glycolytic pathways in liver in response to fasting signals through the transcriptional coactivator PGC-1alpha. A nutrient signalling response that is mediated by pyruvate induces SIRT1 protein in liver during fasting. We find that once SIRT1 is induced, it interacts with and deacetylates PGC-1alpha at specific lysine residues in an NAD(+)-dependent manner. SIRT1 induces gluconeogenic genes and hepatic glucose output through PGC-1alpha, but does not regulate the effects of PGC-1alpha on mitochondrial genes. In addition, SIRT1 modulates the effects of PGC-1alpha repression of glycolytic genes in response to fasting and pyruvate. Thus, we have identified a molecular mechanism whereby SIRT1 functions in glucose homeostasis as a modulator of PGC-1alpha. These findings have strong implications for the basic pathways of energy homeostasis, diabetes and lifespan.


Assuntos
Glucose/metabolismo , Homeostase , Sirtuínas/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Restrição Calórica , AMP Cíclico/farmacologia , Jejum/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/farmacologia , Ácido Láctico/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Longevidade , Lisina/metabolismo , Camundongos , NAD/metabolismo , Estado Nutricional , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Sirtuína 1 , Sirtuínas/genética , Fatores de Transcrição
10.
iScience ; 23(2): 100831, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31982780

RESUMO

Metabolism is a key regulator of hematopoietic stem cell (HSC) functions. There is a lack of real-time, non-invasive approaches to evaluate metabolism in single HSCs. Using fluorescence lifetime imaging microscopy, we developed a set of metabolic optical biomarkers (MOBs) from the auto-fluorescent properties of metabolic coenzymes NAD(P)H and FAD. The MOBs revealed the enhanced glycolysis, low oxidative metabolism, and distinct mitochondrial localization of HSCs. Importantly, the fluorescence lifetime of enzyme-bound NAD(P)H (τbound) can non-invasively monitor the glycolytic/lactate dehydrogenase activity in single HSCs. As a proof of concept for metabolism-based cell sorting, we further identified HSCs within the Lineage-cKit+Sca1+ (KLS) hematopoietic stem/progenitor population using MOBs and a machine-learning algorithm. Moreover, we revealed the dynamic changes of MOBs, and the association of longer τbound with enhanced glycolysis under HSC stemness-maintaining conditions during HSC culture. Our work thus provides a new paradigm to identify and track the metabolism of single HSCs non-invasively and in real time.

12.
FEBS Lett ; 582(1): 46-53, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18036349

RESUMO

Energy homeostasis in mammals is achieved through tight regulation of tissue-specific metabolic pathways that become dysregulated in metabolic diseases including diabetes and obesity. At the molecular level, main nutrient and hormonal signaling pathways impinge on expression of genes encoding for metabolic enzymes. Among the major components of this transcriptional circuitry are the PGC-1 alpha transcriptional complexes. An important regulatory mechanism of this complex is through acetylation and SIRT1-mediated lysine de-acetylation under low nutrient conditions. Activation of SIRT1 can mimic several metabolic aspects of calorie restriction that target selective nutrient utilization and mitochondrial oxidative function to regulate energy balance. Thus, understanding the PGC-1 alpha and SIRT1 pathways might have important implications for comprehending metabolic and age-associated diseases.


Assuntos
Adaptação Fisiológica , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA , Ratos , Sirtuína 1
14.
Cell Rep ; 19(3): 479-486, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423312

RESUMO

The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF) proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA), stimulates GAlert in skeletal muscle stem cells (MuSCs) and fibro-adipogenic progenitors (FAPs). We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing.


Assuntos
Ciclo Celular/efeitos dos fármacos , Serina Endopeptidases/farmacologia , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Serina Endopeptidases/administração & dosagem , Soro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
15.
Cell Stem Cell ; 21(6): 806-818.e5, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220665

RESUMO

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.


Assuntos
Células-Tronco Adultas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Animais , Drosophila , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Knockout , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
16.
Nucleic Acids Res ; 31(4): 1311-8, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12582251

RESUMO

Nanoscale alpha-hemolysin pores can be used to analyze individual DNA or RNA molecules. Serial examination of hundreds to thousands of molecules per minute is possible using ionic current impedance as the measured property. In a recent report, we showed that a nanopore device coupled with machine learning algorithms could automatically discriminate among the four combinations of Watson-Crick base pairs and their orientations at the ends of individual DNA hairpin molecules. Here we use kinetic analysis to demonstrate that ionic current signatures caused by these hairpin molecules depend on the number of hydrogen bonds within the terminal base pair, stacking between the terminal base pair and its nearest neighbor, and 5' versus 3' orientation of the terminal bases independent of their nearest neighbors. This report constitutes evidence that single Watson-Crick base pairs can be identified within individual unmodified DNA hairpin molecules based on their dynamic behavior in a nanoscale pore.


Assuntos
Pareamento de Bases , DNA/química , Conformação de Ácido Nucleico , Tolueno/análogos & derivados , Algoritmos , Sequência de Bases , DNA/genética , Proteínas Hemolisinas/química , Cinética , Nanotecnologia/métodos , Conformação de Ácido Nucleico/efeitos dos fármacos , Tolueno/farmacologia
17.
Cell Stem Cell ; 19(2): 150-151, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27494671

RESUMO

Following an injury, the extracellular matrix (ECM) undergoes dramatic remodeling to facilitate tissue repair. In a new study, Lukjanenko and colleagues show how an age-associated change in this process affects the regenerative ability of muscle stem cells (MuSCs).


Assuntos
Matriz Extracelular/química , Nicho de Células-Tronco , Músculos , Mioblastos , Regeneração
18.
Mol Endocrinol ; 28(6): 912-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694308

RESUMO

Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes.


Assuntos
Fatores de Transcrição Forkhead/genética , Gluconeogênese , Hepatócitos/metabolismo , Fígado/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Glucose/biossíntese , Células HEK293 , Humanos , Fígado/citologia , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Transcrição Gênica , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
19.
Diabetes ; 63(5): 1519-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24458359

RESUMO

Hepatic ketogenesis plays an important role in catabolism of fatty acids during fasting along with dietary lipid overload, but the mechanisms regulating this process remain poorly understood. Here, we show that Cdc2-like kinase 2 (Clk2) suppresses fatty acid oxidation and ketone body production during diet-induced obesity. In lean mice, hepatic Clk2 protein is very low during fasting and strongly increased during feeding; however, in diet-induced obese mice, Clk2 protein remains elevated through both fed and fasted states. Liver-specific Clk2 knockout mice fed a high-fat diet exhibit increased fasting levels of blood ketone bodies, reduced respiratory exchange ratio, and increased gene expression of fatty acid oxidation and ketogenic pathways. This effect of Clk2 is cell-autonomous, because manipulation of Clk2 in hepatocytes controls genes and rates of fatty acid utilization. Clk2 phosphorylation of peroxisome proliferator-activated receptor γ coactivator (PGC-1α) disrupts its interaction with Mediator subunit 1, which leads to a suppression of PGC-1α activation of peroxisome proliferator-activated receptor α target genes in fatty acid oxidation and ketogenesis. These data demonstrate the importance of Clk2 in the regulation of fatty acid metabolism in vivo and suggest that inhibition of hepatic Clk2 could provide new therapies in the treatment of fatty liver disease.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Transcrição/genética
20.
Cell Metab ; 11(1): 23-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20074525

RESUMO

Dynamic regulation of insulin signaling and metabolic gene expression is critical to nutrient homeostasis; dysregulation of these pathways is widely implicated in insulin resistance and other disease states. Though the metabolic effects of insulin are well established, the components linking insulin signal transduction to a metabolic response are not as well understood. Here, we show that Cdc2-like kinase 2 (Clk2) is an insulin-regulated suppressor of hepatic gluconeogenesis and glucose output. Clk2 protein levels and kinase activity are induced as part of the hepatic refeeding response by the insulin/Akt pathway. Clk2 directly phosphorylates the SR domain on PGC-1alpha, resulting in repression of gluconeogenic gene expression and hepatic glucose output. In addition, Clk2 is downregulated in db/db mice, and reintroduction of Clk2 largely corrects glycemia. Thus, we have identified a role for and regulation of the Clk2 kinase as a component of hepatic insulin signaling and glucose metabolism.


Assuntos
Gluconeogênese , Insulina/metabolismo , Fígado/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adenoviridae/genética , Animais , Glicemia/metabolismo , Células Cultivadas , Ingestão de Alimentos , Técnicas de Transferência de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA