Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mar Drugs ; 21(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37504950

RESUMO

Marine environments represent an enormous biodiversity reservoir due to their numerous different habitats, being abundant in microorganisms capable of producing biomolecules, namely exopolysaccharides (EPS), with unique physical characteristics and applications in a broad range of industrial sectors. From a total of 67 marine-derived bacteria obtained from marine sediments collected at depths of 200 to 350 m from the Estremadura Spur pockmarks field, off the coast of Continental Portugal, the Brevundimonas huaxiensis strain SPUR-41 was selected to be cultivated in a bioreactor with saline culture media and glucose as a carbon source. The bacterium exhibited the capacity to produce 1.83 g/L of EPS under saline conditions. SPUR-41 EPS was a heteropolysaccharide composed of mannose (62.55% mol), glucose (9.19% mol), rhamnose (19.41% mol), glucuronic acid (4.43% mol), galactose (2.53% mol), and galacturonic acid (1.89% mol). Moreover, SPUR-41 EPS also revealed acyl groups in its composition, namely acetyl, succinyl, and pyruvyl. This study revealed the importance of research on marine environments for the discovery of bacteria that produce new value-added biopolymers for pharmaceutical and other biotechnological applications, enabling us to potentially address saline effluent pollution via a sustainable circular economy.


Assuntos
Biotecnologia , Polissacarídeos Bacterianos , Bactérias , Reatores Biológicos , Biopolímeros
2.
Mar Drugs ; 20(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35049876

RESUMO

The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Actinobacteria/genética , Animais , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Organismos Aquáticos , Produtos Biológicos , Linhagem Celular Tumoral/efeitos dos fármacos , Ecossistema , Células HaCaT/efeitos dos fármacos , Humanos , Metabolômica , Filogenia , Portugal
3.
Naturwissenschaften ; 100(1): 21-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132300

RESUMO

Among chemosymbiotic metazoans found at deep-sea hydrothermal vents, cold seeps and organic falls, members of the mussel clade Bathymodiolinae (Bivalvia: Mytilidae) have evolved interactions with a higher diversity of bacterial lineages than other bivalve groups. Here, we characterized the bacteria associated with "Bathymodiolus" mauritanicus and Idas-like specimens from three sites in the Northeast Atlantic (two mud volcanoes in the Gulf of Cadiz and one seamount of the Gorringe Bank). Phylogenetic analysis of bacterial 16S rRNA-encoding gene sequences demonstrated that "B". mauritanicus has a dual symbiosis dominated by two phylotypes of methane-oxidising bacteria and a less abundant phylotype of a sulphur-oxidising bacterium. The latter was the dominant phylotype in a sympatric population of Idas-like mussels at the Darwin mud volcano. These results are the first report of a bacterial phylotype shared between two deep-sea mussels from divergent clades. This sulphur-oxidising bacterium was absent from Idas-like specimens from the other two sites (Gorringe Bank and Meknès mud volcano), in which bacterial clone libraries were dominated by other Gammaproteobacteria related to symbionts previously identified in Idas modiolaeformis from the Eastern Mediterranean. All Idas-like specimens studied herein are closely related and also related to I. modiolaeformis. However, they probably display different associations with bacteria, with the possible absence of both methane- and sulphur-oxidising symbionts at the Gorringe Bank. These results draw a very complex picture of associations between mussels and bacteria in the Northeast Atlantic, which could be highly variable depending on locale characteristics of the habitats.


Assuntos
Bactérias/classificação , Bivalves/microbiologia , Filogenia , Simbiose , Animais , Oceano Atlântico , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Bacterianos/genética , RNA Ribossômico 16S/genética
4.
Front Microbiol ; 13: 828469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432234

RESUMO

Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.

5.
R Soc Open Sci ; 9(10): 220885, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249326

RESUMO

Deep-sea hydrothermal vents host lush chemosynthetic communities, dominated by endemic fauna that cannot live in other ecosystems. Despite over 500 active vents found worldwide, the Arctic has remained a little-studied piece of vent biogeography. Though located as early as 2001, the faunal communities of the Aurora Vent Field on the ultra-slow spreading Gakkel Ridge remained unsampled until recently, owing to difficulties with sampling on complex topography below permanent ice. Here, we report an unusual cocculinid limpet abundant on inactive chimneys in Aurora (3883-3884 m depth), describing it as Cocculina aurora n. sp. using an integrative approach combining traditional dissection, electron microscopy, molecular phylogeny, and three-dimensional anatomical reconstruction. Gross anatomy of the new species was typical for Cocculina, but it has a unique radula with broad, multi-cuspid rachidian where the outermost lateral is reduced compared to typical cocculinids. A phylogenetic reconstruction using the mitochondrial COI gene also confirmed its placement in Cocculina. Only the second cocculinid found at vents following the description of the Antarctic Cocculina enigmadonta, this is currently the sole cocculinid restricted to vents. Our discovery adds to the evidence that Arctic vents host animal communities closely associated with wood falls and distinct from other parts of the world.

6.
Naturwissenschaften ; 98(4): 281-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21336695

RESUMO

Thyasiridae are one of the less studied groups of chemosymbiotic bivalves. Here, we investigated symbioses in three different thyasirid species collected at three cold seeps from the Atlantic and Mediterranean. Phylogenetic analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each thyasirid species harbours a single phylotype of symbiont that belongs to a distinct lineage of putative sulphur-oxidizing Gammaproteobacteria. This result is confirmed by other marker genes (encoding 23S rRNA and APS reductase) and fluorescence in situ hybridization. This work highlights the diversity of bacteria involved in symbiosis with thyasirids and underlines the relevance of this group as a target for future symbiosis studies.


Assuntos
Bivalves/classificação , Bivalves/microbiologia , Gammaproteobacteria/fisiologia , Filogenia , Simbiose/fisiologia , Animais , Oceano Atlântico , Biodiversidade , Gammaproteobacteria/citologia , Gammaproteobacteria/genética , Mar Mediterrâneo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Especificidade da Espécie
7.
Antonie Van Leeuwenhoek ; 100(1): 83-98, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21359663

RESUMO

Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Poliquetos/microbiologia , Água do Mar/microbiologia , Animais , Oceano Atlântico , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Dados de Sequência Molecular , Filogenia , Poliquetos/fisiologia , Simbiose
8.
PLoS One ; 10(12): e0144307, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710314

RESUMO

The Mediterranean Sea and adjoining East Atlantic Ocean host a diverse array of small-sized mussels that predominantly live on sunken, decomposing organic remains. At least two of these, Idas modiolaeformis and Idas simpsoni, are known to engage in gill-associated symbioses; however, the composition, diversity and variability of these symbioses with changing habitat and location is poorly defined. The current study presents bacterial symbiont assemblage data, derived from 454 pyrosequencing carried out on replicate specimens of these two host species, collected across seven sample sites found in three oceanographic regions in the Mediterranean and East Atlantic. The presence of several bacterial OTUs in both the Mediterranean Sea and eastern Atlantic suggests that similar symbiont candidates occur on both sides of the Strait of Gibraltar. The results reveal markedly different symbiotic modes in the two species. Idas modiolaeformis displays high symbiont diversity and flexibility, with strong variation in symbiont composition from the East Mediterranean to the East Atlantic. Idas simpsoni displays low symbiont diversity but high symbiont fidelity, with a single dominant OTU occurring in all specimens analysed. These differences are argued to be a function of the host species, where subtle differences in host evolution, life-history and behaviour could partially explain the observed patterns. The variability in symbiont compositions, particularly in Idas modiolaeformis, is thought to be a function of the nature, context and location of the habitat from which symbiont candidates are sourced.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Mytilidae/microbiologia , Simbiose/fisiologia , Animais , Sequência de Bases , Biodiversidade , Gibraltar , Mar Mediterrâneo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
PLoS One ; 8(10): e76688, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098550

RESUMO

Organic falls create localised patches of organic enrichment and disturbance where enhanced degradation is mediated by diversified microbial assemblages and specialized fauna. The view of organic falls as "stepping stones" for the colonization of deep-sea reducing environments has been often loosely used, but much remains to be proven concerning their capability to bridge dispersal among such environments. Aiming the clarification of this issue, we used an experimental approach to answer the following questions: Are relatively small organic falls in the deep sea capable of sustaining taxonomically and trophically diverse assemblages over demographically relevant temporal scales? Are there important depth- or site-related sources of variability for the composition and structure of these assemblages? Is the proximity of other reducing environments influential for their colonization? We analysed the taxonomical and trophic diversity patterns and partitioning (α- and ß-diversity) of the macrofaunal assemblages recruited in small colonization devices with organic and inorganic substrata after 1-2 years of deployment on mud volcanoes of the Gulf of Cádiz. Our results show that small organic falls can sustain highly diverse and trophically coherent assemblages for time periods allowing growth to reproductive maturity, and successive generations of dominant species. The composition and structure of the assemblages showed variability consistent with their biogeographic and bathymetric contexts. However, the proximity of cold seeps had limited influence on the similarity between the assemblages of these two habitats and organic falls sustained a distinctive fauna with dominant substrate-specific taxa. We conclude that it is unlikely that small organic falls may regularly ensure population connectivity among cold seeps and vents. They may be a recurrent source of evolutionary candidates for the colonization of such ecosystems. However, there may be a critical size of organic fall to create the necessary intense and persistent reducing conditions for sustaining typical chemosymbiotic vent and seep organisms.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Ecossistema , Invertebrados/fisiologia , Animais , Organismos Aquáticos/classificação , Oceano Atlântico , Biodiversidade , Cadeia Alimentar , Invertebrados/classificação , Oxirredução , Salinidade
10.
Microbiologyopen ; 1(4): 467-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23233246

RESUMO

Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ≈ 600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/fisiologia , Sequência de Aminoácidos , Animais , Oceano Atlântico , Sequência de Bases , Bivalves/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Gammaproteobacteria/genética , Variação Genética , Brânquias/microbiologia , Guiné , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/química , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Simbiose
11.
Zookeys ; (113): 1-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21976991

RESUMO

The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz are reviewed. Of the thirteen species closely associated with chemosynthetic settings two Solemyidae, Solemya (Petrasma) elarraichensissp. n. and Acharax gadiraesp. n., one Lucinidae, Lucinoma asapheussp. n., and one Vesicomyidae, Isorropodon megadesmussp. n. are described and compared to close relatives of their respective families. The biodiversity and distribution of the chemosymbiotic bivalves in the Gulf of Cadiz are discussed and compared to the available information from other cold seeps in the Eastern Atlantic and Mediterranean. Although there is considerable similarity at the genus level between seep/mud volcano fields in the Eastern Atlantic and Mediterranean, there is little overlap at the species level. This indicates a high degree of endemism within chemosymbiotic bivalve assemblages.

12.
FEMS Microbiol Ecol ; 73(3): 486-99, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20550577

RESUMO

As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutrition, whereas isotopic signatures of B. mauritanicus suggest methanotrophic nutrition. The indication by stable isotope analysis that chemosynthetic bacteria make a substantial contribution to the nutrition of the bivalves led us to investigate their associated bacteria and their phylogenetic relationships based on comparative 16S rRNA gene sequence analysis. PCR-denaturing gradient gel electrophoresis analysis and cloning of bacterial 16S rRNA-encoding genes confirmed the presence of sulfide-oxidizing symbionts within gill tissues of many of the studied specimens. Phylogenetic analysis of bacterial 16S rRNA gene sequences demonstrated that most bacteria were related to known sulfide-oxidizing endosymbionts found in other deep-sea chemosynthetic environments, with the co-occurrence of methane-oxidizing symbionts in Bathymodiolus specimens. This study confirms the presence of several chemosynthetic bivalves in the Gulf of Cadiz and further highlights the importance of sulfide- and methane-oxidizing symbionts in the trophic ecology of macrobenthic communities in MV.


Assuntos
Bactérias/genética , Bivalves/microbiologia , Filogenia , Animais , Bactérias/isolamento & purificação , Isótopos de Carbono/análise , DNA Bacteriano/genética , Biblioteca Gênica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA