RESUMO
Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.
Assuntos
Cadeia Alimentar , Microbiota , Biodiversidade , Mudança Climática , Estado NutricionalRESUMO
Run-of-river (ROR) dams, often perceived as having minimal environmental impact, can induce significant hydrodynamic changes that alter aquatic ecosystems. We investigated the impacts of an ROR dam on the Madeira River, the largest Amazon tributary, focusing on phytoplankton communities, their ecological implications, and related environmental factors. Our study examined changes in biomass and environmental factors (using General Linear Mixed Models - GLMM), species composition (using PERMANOVA) before and after damming, in both the main channel and tributaries (N = 549 samples). We also identified indicator species associated with different damming phases and regions through an indicator value analysis. The results showed that, following dam construction, the phytoplankton community changed in both the main channel and tributaries, with a shift from lotic diatoms to lentic phytoflagellates. This transition was likely facilitated by altered hydrodynamics and possibly influenced by the decomposition of flooded vegetation in the dam's influence zone. The decomposition of this vegetation could explain both the observed increase in oxygen consumption and the subsequent rise in phytoflagellate biomass after damming. However, despite the overall increase in phytoplankton biomass, the values remained within oligotrophic to mesotrophic conditions, consistent with the low nutrient concentrations recorded. However, we caution that the dam-created hydrodynamic conditions are optimal for phytoplankton growth, potentially exacerbating nutrient-related issues in the future. We recommend proactive management strategies to prevent nutrient enrichment from activities such as agriculture and livestock in isolated Amazon areas affected by dams, thereby mitigating potential degradation of water quality linked to increased phytoplankton biomass.
Assuntos
Biomassa , Monitoramento Ambiental , Fitoplâncton , Rios , Rios/química , Brasil , EcossistemaRESUMO
A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.
Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Água Doce , Fatores de TempoRESUMO
Freshwaters are among the most vulnerable ecosystems to climate warming, with projected temperature increases over the coming decades leading to significant losses of aquatic biodiversity. Experimental studies that directly warm entire natural ecosystems in the tropics are needed, for understanding the disturbances on aquatic communities. Therefore, we conducted an experiment to test the impacts of predicted future warming on density, alpha diversity, and beta diversity of freshwater aquatic communities, inhabiting natural microecosystems-Neotropical tank bromeliads. Aquatic communities within the tanks bromeliads were experimentally exposed to warming, with temperatures ranging from 23.58 to 31.72°C. Linear regression analysis was used to test the impacts of warming. Next, distance-based redundancy analysis was performed to assess how warming might alter total beta diversity and its components. This experiment was conducted across a gradient of habitat size (bromeliad water volume) and availability of detrital basal resources. A combination of the highest detritus biomass and higher experimental temperatures resulted in the greatest density of flagellates. However, the density of flagellates declined in bromeliads with higher water volume and lower detritus biomass. Moreover, the combination of the highest water volume and high temperature reduced density of copepods. Finally, warming changed microfauna species composition, mostly through species substitution (ß repl component of total beta-diversity). These findings indicate that warming strongly structures freshwater communities by reducing or increasing densities of different aquatic communities groups. It also enhances beta-diversity, and many of these effects are modulated by habitat size or detrital resources.
RESUMO
Although it is widely known that dams can have large impacts on the environmental and biological characteristics of downstream rivers, there is a substantial lack of studies focusing on which ecological processes cause longitudinal changes in biological communities downstream of reservoirs. We investigated longitudinal patterns in the total beta diversity and its replacement and richness difference components for actively (fish) and passively (phytoplankton) dispersing biological groups. Our results, obtained from a 230â¯km sampling stretch, demonstrated the key role played by tributaries in the downstream direction from main river impoundment, which influenced local environmental conditions and beta diversity patterns of each biological group. Both replacement and richness difference contributed to high values of total beta diversity for fish (averageâ¯=â¯0.77) and phytoplankton (averageâ¯=â¯0.79), but their relative importance was more associated with the replacement component for both biological groups (averageâ¯=â¯0.45 and 0.52, respectively). Moreover, we observed clear differences between fish and phytoplankton in beta diversity patterns operating at small and broad scales, as well as in the mechanisms driving each beta diversity component. Directional dispersal-related processes and environmental filtering played a major role in shaping total beta diversity and its components for fish, while temporal factors explained considerable parts of phytoplankton beta diversity. Our findings contributed to understanding of tributary-induced heterogeneity and highlight the importance of dam-free stretches of rivers for preserving the integrity of dammed river basins.
Assuntos
Biodiversidade , Ecossistema , Rios/química , Animais , Biota , Ecologia , Monitoramento Ambiental , Peixes , Fitoplâncton , Densidade Demográfica , Dinâmica Populacional , Estações do AnoRESUMO
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that "all-or-nothing" interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.