Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 194(3): 1662-1673, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966976

RESUMO

Carotenoids are health-promoting plastidial isoprenoids with essential functions in plants as photoprotectants and photosynthetic pigments in chloroplasts. They also accumulate in specialized plastids named chromoplasts, providing color to non-photosynthetic tissues such as flower petals and ripe fruit. Carotenoid accumulation in chromoplasts requires specialized structures and proteins such as fibrillins (FBNs). The FBN family includes structural components of carotenoid sequestering structures in chromoplasts and members with metabolic roles in chloroplasts and other plastid types. However, the association of FBNs with carotenoids in plastids other than chromoplasts has remained unexplored. Here, we show that Arabidopsis (Arabidopsis thaliana) FBN6 interacts with phytoene synthase (PSY), the first enzyme of the carotenoid pathway. FBN6, but not FBN4 (a FBN that does not interact with PSY), enhances the activity of plant PSY (but not of the bacterial PSY crtB) in Escherichia coli cells. Overexpression of FBN6 in Nicotiana benthamiana leaves results in a higher production of phytoene, the product of PSY activity, whereas loss of FBN6 activity in Arabidopsis mutants dramatically reduces the production of carotenoids during seedling de-etiolation and after exposure to high light. Our work hence demonstrates that FBNs promote not only the accumulation of carotenoids in chromoplasts but also their biosynthesis in chloroplasts.


Assuntos
Arabidopsis , Arabidopsis/genética , Carotenoides , Cloroplastos , Escherichia coli , Plastídeos , Fibrilinas
3.
Plant Physiol ; 195(3): 2323-2338, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478585

RESUMO

Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.


Assuntos
Monoterpenos , Doenças das Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas , Ácido Salicílico , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Salicílico/metabolismo , Monoterpenos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Hidroxilação , Tiadiazóis/farmacologia , Regulação da Expressão Gênica de Plantas , Fosfatos Açúcares/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Eritritol/análogos & derivados , Eritritol/metabolismo , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos
5.
Plant Physiol ; 193(3): 2021-2036, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37474108

RESUMO

Carotenoids are plastidial isoprenoids required for photoprotection and phytohormone production in all plants. In tomato (Solanum lycopersicum), carotenoids also provide color to flowers and ripe fruit. Phytoene synthase (PSY) catalyzes the first and main flux-controlling step of the carotenoid pathway. Three genes encoding PSY isoforms are present in tomato, PSY1 to PSY3. Mutants have shown that PSY1 is the isoform providing carotenoids for fruit pigmentation, but it is dispensable in photosynthetic tissues. No mutants are available for PSY2 or PSY3, but their expression profiles suggest a main role for PSY2 in leaves and PSY3 in roots. To further investigate isoform specialization with genetic tools, we created gene-edited lines defective in PSY1 and PSY2 in the MicroTom background. The albino phenotype of lines lacking both PSY1 and PSY2 confirmed that PSY3 does not contribute to carotenoid biosynthesis in shoot tissues. Our work further showed that carotenoid production in tomato shoots relies on both PSY1 and PSY2 but with different contributions in different tissues. PSY2 is the main isoform for carotenoid biosynthesis in leaf chloroplasts, but PSY1 is also important in response to high light. PSY2 also contributes to carotenoid production in flower petals and, to a lesser extent, fruit chromoplasts. Most interestingly, our results demonstrate that fruit growth is controlled by abscisic acid (ABA) specifically produced in the pericarp from PSY1-derived carotenoid precursors, whereas PSY2 is the main isoform associated with ABA synthesis in seeds and salt-stressed roots.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Cell ; 33(12): 3645-3657, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34586419

RESUMO

The stigma is an angiosperm-specific tissue that is essential for pollination. In the last two decades, several transcription factors with key roles in stigma development in Arabidopsis thaliana have been identified. However, genetic analyses have thus far been unable to unravel the precise regulatory interactions among these transcription factors or the molecular basis for their selective roles in different spatial and temporal domains. Here, we show that the NGATHA (NGA) and HECATE (HEC) transcription factors, which are involved in different developmental processes but are both essential for stigma development, require each other to perform this function. This relationship is likely mediated by their physical interaction in the apical gynoecium. NGA/HEC transcription factors subsequently upregulate INDEHISCENT (IND) and SPATULA and are indispensable for the binding of IND to some of its targets to allow stigma differentiation. Our findings support a nonhierarchical regulatory scenario in which the combinatorial action of different transcription factors provides exquisite temporal and spatial specificity of their developmental outputs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Fatores de Transcrição/metabolismo
7.
New Phytol ; 239(4): 1190-1202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282777

RESUMO

Shade tolerance is an ecological concept used in a wide range of disciplines, from plant physiology to landscaping or gardening. It refers to the strategy of some plants to persist and even thrive in environments with low light levels because of the shade produced by the vegetation proximity (e.g. in the understory). Shade tolerance influences the organization, structure, functioning, and dynamics of plant communities. However, little is known about its molecular and genetic basis. By contrast, there is a good understanding on how plants deal with the proximity of other plants, a divergent strategy used by most crops to respond to vegetation proximity. While generally shade-avoiding species strongly elongate in response to the proximity of other plants, shade-tolerant species do not. Here we review the molecular mechanisms that control the regulation of hypocotyl elongation in shade-avoiding species as a reference framework to understand shade tolerance. Comparative studies indicate that shade tolerance is implemented by components also known to regulate hypocotyl elongation in shade-avoiding species. These components, however, show differential molecular properties that explain how, in response to the same stimulus, shade-avoiding species elongate while shade-tolerant ones do not.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Luz , Hipocótilo/metabolismo , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
8.
New Phytol ; 237(5): 1696-1710, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36307969

RESUMO

Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A ß-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.


Assuntos
Carotenoides , Plastídeos , Espécies Reativas de Oxigênio/metabolismo , Plastídeos/metabolismo , Carotenoides/metabolismo , Cloroplastos/metabolismo , beta Caroteno/metabolismo
9.
New Phytol ; 239(6): 2292-2306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381102

RESUMO

Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.


Assuntos
Diterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Farnesiltranstransferase , Carotenoides/metabolismo , Isoformas de Proteínas , Folhas de Planta/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817419

RESUMO

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Assuntos
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Cloroplastos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/fisiologia , Engenharia de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
11.
Plant J ; 105(1): 7-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111454

RESUMO

Members of the plant specific RAV family of transcription factors regulate several developmental and physiological processes. In the model plant Arabidopsis thaliana, the RAV TEMPRANILLO 1 (TEM1) and TEM2 control important phase changes such as the juvenile to adult and the vegetative to reproductive transitions. Besides their known regulatory function in plant development, a transcriptomics analysis of transgenic plants overexpressing TEM1 also revealed overrepresentation of Gene Ontology (GO) categories related to abiotic stress responses. Therefore, to investigate the biological relevance of these TEM-dependent transcriptomic changes and elucidate whether TEMs contribute to the modulation of plant growth in response to salinity, we analyzed the behavior of TEM gain and loss of function mutants subjected to mild and high salt stresses at different development stages. With respect to increasing salinity, TEM overexpressing plants were hypersensitive whereas the tem1 tem2 double mutants were more tolerant. Precisely, tem1 tem2 mutants germinated and flowered faster than the wild-type plants under salt stress conditions. Also, tem1 tem2 plants showed a delay in salt-induced leaf senescence, possibly as a consequence of downregulation of jasmonic acid biosynthesis genes. Besides a shorter life cycle and delayed senescence, tem1 tem2 mutants appeared to be better suited to withstand oxidative stress as they accumulated higher levels of α-tocopherol (an important antioxidant metabolite) and displayed a slower degradation of photosynthetic pigments. Taken together, our studies suggest novel and crucial roles for TEM in adaptive growth as they modulate plant development in response to environmental changes such as increasing soil salinity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Tolerância ao Sal , Fatores Genéricos de Transcrição/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/fisiologia , Estresse Salino , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
12.
Metab Eng ; 70: 166-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031492

RESUMO

Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.


Assuntos
Solanum lycopersicum , Biomassa , Vias Biossintéticas/genética , Carotenoides/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estresse Fisiológico
13.
Plant Physiol ; 186(4): 2137-2151, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618102

RESUMO

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.


Assuntos
Aclimatação , Brassicaceae/fisiologia , Luz , Brassicaceae/efeitos da radiação , Especificidade da Espécie
14.
Plant Cell ; 31(2): 384-398, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705135

RESUMO

Plants use light as energy for photosynthesis but also as a signal of competing vegetation. Using different concentrations of norflurazon and lincomycin, we found that the response to canopy shade in Arabidopsis (Arabidopsis thaliana) was repressed even when inhibitors only caused a modest reduction in the level of photosynthetic pigments. High inhibitor concentrations resulted in albino seedlings that were unable to elongate when exposed to shade, in part due to attenuated light perception and signaling via phytochrome B and phytochrome-interacting factors. The response to shade was further repressed by a retrograde network with two separate nodes represented by the transcription factor LONG HYPOCOTYL 5 and the carotenoid-derived hormone abscisic acid. The unveiled connection among chloroplast status, light (shade) signaling, and developmental responses should contribute to achieve optimal photosynthetic performance under light-changing conditions.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Fitocromo/metabolismo , Fitocromo B/metabolismo
15.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530733

RESUMO

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Assuntos
Arabidopsis/fisiologia , Cardamine/fisiologia , Luz , Fitocromo/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
16.
Plant Biotechnol J ; 19(5): 1008-1021, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314563

RESUMO

Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making carotenoid enrichment of green tissues challenging. Here we show that leaf carotenoid levels can be boosted through engineering their biosynthesis outside the chloroplast. Transient expression experiments in Nicotiana benthamiana leaves indicated that high extraplastidial production of carotenoids requires an enhanced supply of their isoprenoid precursors in the cytosol, which was achieved using a deregulated form of the main rate-determining enzyme of the mevalonic acid (MVA) pathway. Constructs encoding bacterial enzymes were used to convert these MVA-derived precursors into carotenoid biosynthetic intermediates that do not normally accumulate in leaves, such as phytoene and lycopene. Cytosolic versions of these enzymes produced extraplastidial carotenoids at levels similar to those of total endogenous (i.e. chloroplast) carotenoids. Strategies to enhance the development of endomembrane structures and lipid bodies as potential extraplastidial carotenoid storage systems were not successful to further increase carotenoid contents. Phytoene was found to be more bioaccessible when accumulated outside plastids, whereas lycopene formed cytosolic crystalloids very similar to those found in the chromoplasts of ripe tomatoes. This extraplastidial production of phytoene and lycopene led to an increased antioxidant capacity of leaves. Finally, we demonstrate that our system can be adapted for the biofortification of leafy vegetables such as lettuce.


Assuntos
Biofortificação , Carotenoides , Cloroplastos , Folhas de Planta , Plastídeos
17.
New Phytol ; 231(1): 255-272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590894

RESUMO

Geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) serves as a precursor for many plastidial isoprenoids, including carotenoids. Phytoene synthase (PSY) converts GGPP into phytoene, the first committed intermediate of the carotenoid pathway. Here we used biochemical, molecular, and genetic tools to characterise the plastidial members of the GGPPS family in tomato (Solanum lycopersicum) and their interaction with PSY isoforms. The three tomato GGPPS isoforms found to localise in plastids (SlG1, 2 and 3) exhibit similar kinetic parameters. Gene expression analyses showed a preferential association of individual GGPPS and PSY isoforms when carotenoid biosynthesis was induced during root mycorrhization, seedling de-etiolation and fruit ripening. SlG2, but not SlG3, physically interacts with PSY proteins. By contrast, CRISPR-Cas9 mutants defective in SlG3 showed a stronger impact on carotenoid levels and derived metabolic, physiological and developmental phenotypes compared with those impaired in SlG2. Double mutants defective in both genes could not be rescued. Our work demonstrates that the bulk of GGPP production in tomato chloroplasts and chromoplasts relies on two cooperating GGPPS paralogues, unlike other plant species such as Arabidopsis thaliana, rice or pepper, which produce their essential plastidial isoprenoids using a single GGPPS isoform.


Assuntos
Arabidopsis , Solanum lycopersicum , Carotenoides , Farnesiltranstransferase , Solanum lycopersicum/genética , Isoformas de Proteínas/genética
18.
PLoS Genet ; 13(9): e1007022, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28937985

RESUMO

Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP) pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN). Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR) mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity) are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.


Assuntos
Proteínas de Arabidopsis/genética , Cloroplastos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Endopeptidase Clp/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição de Choque Térmico , Lincomicina/farmacologia , Chaperonas Moleculares/genética , Fotossíntese/genética , Plantas Geneticamente Modificadas , Plântula/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas/genética
19.
Plant Cell Physiol ; 60(11): 2369-2381, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31318380

RESUMO

The alternative oxidase (AOX) constitutes a nonphosphorylating pathway of electron transport in the mitochondrial respiratory chain that provides flexibility to energy and carbon primary metabolism. Its activity is regulated in vitro by the mitochondrial thioredoxin (TRX) system which reduces conserved cysteines residues of AOX. However, in vivo evidence for redox regulation of the AOX activity is still scarce. In the present study, the redox state, protein levels and in vivo activity of the AOX in parallel to photosynthetic parameters were determined in Arabidopsis knockout mutants lacking mitochondrial trxo1 under moderate (ML) and high light (HL) conditions, known to induce in vivo AOX activity. In addition, 13C- and 14C-labeling experiments together with metabolite profiling were performed to better understand the metabolic coordination between energy and carbon metabolism in the trxo1 mutants. Our results show that the in vivo AOX activity is higher in the trxo1 mutants at ML while the AOX redox state is apparently unaltered. These results suggest that mitochondrial thiol redox systems are responsible for maintaining AOX in its reduced form rather than regulating its activity in vivo. Moreover, the negative regulation of the tricarboxylic acid cycle by the TRX system is coordinated with the increased input of electrons into the AOX pathway. Under HL conditions, while AOX and photosynthesis displayed similar patterns in the mutants, photorespiration is restricted at the level of glycine decarboxylation most likely as a consequence of redox imbalance.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Oxirredução , Oxirredutases/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética
20.
Plant Cell Environ ; 42(4): 1328-1339, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362122

RESUMO

Tocopherols are important antioxidants exclusively produced in plastids that protect the photosynthetic apparatus from oxidative stress. These compounds with vitamin E activity are also essential dietary nutrients for humans. Although the tocopherol biosynthetic pathway has been elucidated, the mechanisms that regulate tocopherol production and accumulation remain elusive. Here, we investigated the regulatory mechanism underlying tocopherol biosynthesis during ripening in tomato fruits, which are an important source of vitamin E. Our results show that ripening under light conditions increases tocopherol fruit content in a phytochrome-dependent manner by the transcriptional regulation of biosynthetic genes. Moreover, we show that light-controlled expression of the GERANYLGERANYL DIPHOSPHATE REDUCTASE (SlGGDR) gene, responsible for the synthesis of the central tocopherol precursor phytyl diphosphate, is mediated by PHYTOCHROME-INTERACTING FACTOR 3 (SlPIF3). In the absence of light, SlPIF3 physically interacts with the promoter of SlGGDR, down-regulating its expression. By contrast, light activation of phytochromes prevents the interaction between SlPIF3 and the SlGGDR promoter, leading to transcriptional derepression and higher availability of the PDP precursor for tocopherol biosynthesis. The unraveled mechanism provides a new strategy to manipulate fruit metabolism towards improving tomato nutritional quality.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Tocoferóis/metabolismo , Fatores de Transcrição/fisiologia , Imunoprecipitação da Cromatina , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos da radiação , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA