Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985596

RESUMO

Inflammation is an organism's biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey's post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1ß, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1ß proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.


Assuntos
Encefalite , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/efeitos adversos , Eugenol/farmacologia , Eugenol/uso terapêutico , Interleucina-6 , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ciclo-Oxigenase 2/genética , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro
2.
BMC Cancer ; 18(1): 817, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103729

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS: The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS: Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION: GNB4 is important for growth of breast cancer cells and a potential target for treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferases/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Tamoxifeno/administração & dosagem , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/administração & dosagem , Estradiol/efeitos adversos , Estradiol/análogos & derivados , Antagonistas de Estrogênios/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto , Técnicas de Silenciamento de Genes , Genoma Humano , Humanos , Células MCF-7 , Tamoxifeno/efeitos adversos , DNA Metiltransferase 3B
3.
Aging (Albany NY) ; 13(2): 1571-1590, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33465050

RESUMO

The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis. Initially, to analyze the anti-inflammatory effects of novel C. sativa cultivars, we used a well-established full thickness human 3D skin artificial EpiDermFTTM tissue model, whereby tissues were exposed to UV to induce inflammation and then treated with extracts of seven new cannabis cultivars. We noted that out of seven studied extracts of novel C. sativa cultivars, three (#4, #8 and #14) were the most effective, causing profound and concerted down-regulation of COX2, TNFα, IL-6, CCL2, and other cytokines and pathways related to inflammation and fibrosis. These data were further confirmed in the WI-38 lung fibroblast cell line model. Most importantly, one of the tested extracts had no effect at all, and one exerted effect that may be deleterious, signifying that careful cannabis cultivar selection must be based on thorough pre-clinical studies. The observed pronounced inhibition of TNFα and IL-6 is the most important finding, because these molecules are currently considered to be the main targets in COVID-19 cytokine storm and ARDS pathogenesis. Novel anti-TNFα and anti-IL-6 cannabis extracts can be useful additions to the current anti-inflammatory regimens to treat COVID-19, as well as various rheumatological diseases and conditions, and 'inflammaging' - the inflammatory underpinning of aging and frailty.


Assuntos
COVID-19 , Cannabis , Síndrome da Liberação de Citocina , Interleucina-6/antagonistas & inibidores , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , COVID-19/complicações , Canabinoides/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação/virologia , SARS-CoV-2 , Pele/efeitos dos fármacos , Técnicas de Cultura de Tecidos
4.
Aging (Albany NY) ; 12(22): 22425-22444, 2020 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33221759

RESUMO

With the current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. The inhibition of viral entry and thus spread is a plausible therapeutic avenue. SARS-CoV-2 uses receptor-mediated entry into a human host via the angiotensin-converting enzyme 2 (ACE2), which is expressed in lung tissue as well as the oral and nasal mucosa, kidney, testes and gastrointestinal tract. The modulation of ACE2 levels in these gateway tissues may be an effective strategy for decreasing disease susceptibility. Cannabis sativa, especially those high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been found to alter gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. However, its effects on ACE2 expression remain unknown. Working under a Health Canada research license, we developed over 800 new C. sativa cultivars and hypothesized that high-CBD C. sativa extracts may be used to down-regulate ACE2 expression in target COVID-19 tissues. Using artificial 3D human models of oral, airway and intestinal tissues, we identified 13 high-CBD C. sativa extracts that decrease ACE2 protein levels. Some C. sativa extracts down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV-2 entry into host cells. While our most effective extracts require further large-scale validation, our study is important for future analyses of the effects of medical cannabis on COVID-19. The extracts of our most successful novel high-CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the prevention/treatment of COVID-19 as an adjunct therapy.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , COVID-19/prevenção & controle , Cannabis/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Simulação por Computador , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Modelos Anatômicos , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/virologia , Pandemias/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Cell Cycle ; 18(21): 2876-2892, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31522595

RESUMO

Glioblastoma is the most aggressive brain tumor. Although miR-141 has been demonstrated to primarily function as a tumor suppressor in numerous malignancies, including glioblastoma, the mechanisms involved remain poorly understood. Here, it is shown that miR-141 is downregulated in glioblastoma cell lines and tissues and may exert its biological function via directly targeting myelin transcription factor 1-like (MYT1L). Using two glioblastoma cell lines that differ from each other by the functionality of DNA-dependent protein kinase (DNAPK), a functional involvement of DNAPK in the miR-141 tumor suppression network was observed. In M059K cells with a normal function of DNAPK, the enforced expression of miR-141 attenuated MYT1L expression and suppressed cell proliferation. Conversely, the inhibition of miR-141 expression promoted cell proliferation; however, in M059J cells with a loss-of-function DNAPK, miR-141 constitutively inhibited cell proliferation upon ectopic overexpression or inhibition. An overexpression of miR-141 suppressed M059J cell migration, while it had no effect on M059K. Furthermore, the ectopic expression of miR-141 induced an S-phase arrest in both cell lines, whereas the inhibition of miR-141 caused a G1 arrest in M059J and accelerated the S phase in M059K. An overexpression and suppression of miR-141 resulted in an aberrant expression of cell-cycle proteins, including p21. Moreover, MYT1L may be a transcription factor of p21 in p53-mutant cells, whereas DNAPK may function as a repressor of MYT1L. The findings revealed the crucial role of DNAPK in miR-141-mediated suppression of gliomagenesis and demonstrated that it may be a target molecule in miR-141-associated therapeutic interventions for glioblastoma.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Glioblastoma/patologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/metabolismo , Genes Supressores de Tumor/fisiologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia
6.
Mutat Res ; 642(1-2): 28-36, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18508093

RESUMO

Ionizing radiation (IR) effects span beyond the area of direct exposure and can be observed in neighboring and distant naïve cells and organs. This phenomenon is termed a 'bystander effect'. IR effects in directly exposed tissue in vivo are epigenetically mediated and distinct in males and females. Yet, IR-induced bystander effects have never been explored in a sex-specificity domain. We used an in vivo mouse model, whereby the bystander effects are studied in spleen of male and female animals subjected to head exposure when the rest of the body is protected by a medical-grade lead shield. We analyzed the induction of DNA damage and alterations in global DNA methylation. Molecular parameters were correlated with cellular proliferation and apoptosis levels. The changes observed in bystander organs are compared to the changes in unexposed animals and animals exposed to predicted and measured scatter doses. We have found the selective induction of DNA damage levels, global DNA methylation, cell proliferation and apoptosis in exposed and bystander spleen tissue of male and female mice. Sex differences were significantly diminished in animals subjected to a surgical removal of gonads. These data constitute the first evidence of sex differences in radiation-induced bystander effects in mouse spleen in vivo. We show the role of sex hormones in spleen bystander responses and discuss implications of the observed changes.


Assuntos
Efeito Espectador , Dano ao DNA , Radiação Ionizante , Caracteres Sexuais , Animais , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos da radiação , Metilação de DNA , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Radiação , Baço
7.
Front Genet ; 9: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556248

RESUMO

While the refinement of existing and the development of new chemotherapeutic regimens has significantly improved cancer treatment outcomes and patient survival, chemotherapy still causes many persistent side effects. Central nervous system (CNS) toxicity is of particular concern, as cancer patients experience significant deficits in memory, learning, cognition, and decision-making. These chemotherapy-induced cognitive changes are termed chemo brain, and manifest in more than half of cancer survivors. Moreover, recent studies have emerged suggesting that neurocognitive deficits manifest prior to cancer diagnosis and treatment, and thus may be associated with tumor presence, a phenomenon recently termed "tumor brain." To dissect the molecular mechanisms of tumor brain, we used TumorGraftTM models, wherein part of a patient's tumor is grafted into immune-deficient mice. Here, we analyzed molecular changes in the hippocampal tissues of mice carrying triple negative (TNBC) or progesterone receptor positive (PR+BC) xenografts. TNBC growth led to increased oxidative damage, as detected by elevated levels of 4-hydroxy-2-nonenal, a product of lipid peroxidation. Furthermore, the growth of TNBC and PR+BC tumors altered global gene expression in the murine hippocampus and affected multiple pathways implicated in PI3K-Akt and MAPK signaling, as well as other pathways crucial for the proper functioning of hippocampal neurons. TNBC and PR+BC tumor growth also led to a significant decrease in the levels of neuronal transcription factor NPAS4, a regulator that governs the expression of brain-derived neurotrophic factor (BDNF), and several other key brain neurotrophic factors and pro-survival molecules. The decreased expression of ERK1/2, NPAS4, and BDNF are also seen in neurodegenerative conditions and aging, and may constitute an important tumor brain mechanism.

8.
Oncotarget ; 9(11): 10069-10082, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515791

RESUMO

Recent advances in cancer treatments have led to significant increases in cure rates. Most cancer patients are treated with various cytotoxic chemotherapy regimens. These treatment modalities are mutagenic and genotoxic and cause a wide array of late-occurring health problems, and even exert a deleterious influence on future offspring. The adverse effects from exposed parents on offspring are referred to as transgenerational effects, and currently little is known about chemotherapy-induced transgenerational effects. Furthermore, transgenerational effects have not been studied in the brains of progeny of exposed parents. In this study, we analyzed the existence and molecular nature of transgenerational effects in the brains of progeny of animals exposed to three common chemotherapy agents: cyclophosphamide (CPP), procarbazine (PCB) and mitomycin C (MMC). For the first time, our results show that paternal exposure to chemotherapy drugs causes transgenerational changes in the brain of unexposed progeny. Although no DNA damage was observed in terms of γH2AX levels, some alterations were found in levels of PCNA, protein involved in DNA repair, replication and profileration. Furthermore, there were changes in proliferation and apoptosis proteins BCL2 and AKT1, the proteins associated with DNA methylation, DNMT1 and MeCP2. Some altered expression trends were noted in proteins involved in myelin biogenesis, MBP and MYT1L. Moreover, global transcriptome profiling revealed changes in over 200 genes in the whole brains of progeny of animals exposed to CPP, and the changes in the levels of FOXP2 and ELK1proteins were confirmed by western blot analysis. These findings suggest that paternal chemotherapy significantly affects offspring brain development and may affect brain functioning. This research provides a key roadmap for future investigations of the novel phenomenon of transgenerational effects of chemotherapy in the brain of progeny of exposed parents.

9.
Oncogenesis ; 7(7): 54, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30057418

RESUMO

Antiestrogen resistance is a major challenge encountered during the treatment of estrogen receptor alpha positive (ERα+) breast cancer. A better understanding of signaling pathways and downstream transcription factors and their targets may identify key molecules that can overcome antiestrogen resistance in breast cancer. An aberrant expression of miR-22 has been demonstrated in breast cancer; however, its contribution to breast cancer resistance to fulvestrant, an antiestrogen drug, remains unknown. In this study, we demonstrated a moderate elevation in miR-22 expression in the 182R-6 fulvestrant-resistant breast cancer line we used as a model system, and this elevation was positively correlated with the expression of the miRNA biogenesis enzymes AGO2 and Dicer. The level of phosphorylated HER2/neu at Tyr877 was also upregulated in these cells, whereas the level of RelA/p65 phosphorylated at Ser536 (p-p65) was downregulated. Knockdown of HER2/neu led to an induction of p-p65 and a reduction in miR-22 levels. Luciferase assays identified two NF-κB binding motifs in the miR-22 promoter that contributed to transcriptional repression of miR-22. Activation of RelA/p65, triggered by LPS, attenuated miR-22 expression, but this expression was restored by sc-514, a selective IKKß inhibitor. Inhibition of miR-22 suppressed cell proliferation, induced apoptosis and caused cell cycle S-phase arrest, whereas enhancing expression of p21Cip1/Waf1 and p27Kip1. Surprisingly, ectopic expression of miR-22 also suppressed cell proliferation, induced apoptosis, caused S-phase arrest, and promoted the expression of p21Cip1/Waf1 and p27Kip1. Ectopic overexpression of miR-22 repressed the expression of FOXP1 and HDAC4, leading to a marked induction of acetylation of HDAC4 target histones. Conversely, inhibition of miR-22 promoted the expression of both FOXP1 and HDAC4, without the expected attenuation of histone acetylation. Instead, p53 acetylation at lysine 382 was unexpectedly upregulated. Taken together, our findings demonstrated, for the first time, that HER2 activation dephosphorylates RelA/p65 at Ser536. This dephosphoryalted p65 may be pivotal in transactivation of miR-22. Both increased and decreased miR-22 expression cause resensitization of fulvestrant-resistant breast cancer cells to fulvestrant. HER2/NF-κB (p65)/miR-22/HDAC4/p21 and HER2/NF-κB (p65)/miR-22/Ac-p53/p21 signaling circuits may therefore confer this dual role on miR-22 through constitutive transactivation of p21.

10.
Mutat Res ; 619(1-2): 30-7, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17343880

RESUMO

Micro RNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. They play a crucial role in the regulation of genes involved in the control of development, cell proliferation, apoptosis, and stress response. Although miRNA levels are substantially altered in tumors, their role in carcinogenesis, specifically at the early pre-cancerous stages, has not been established. Here we report that exposure of Fisher 344 rats to tamoxifen, a potent hepatocarcinogen in rats, for 24 weeks leads to substantial changes in the expression of miRNA genes in the liver. We noted a significant up-regulation of known oncogenic miRNAs, such as the 17-92 cluster, miR-106a, and miR-34. Furthermore, we confirmed the corresponding changes in the expression of proteins targeted by these miRNAs, which include important cell cycle regulators, chromatin modifiers, and expression regulators implicated in carcinogenesis. All these miRNA changes correspond to previously reported alterations in full-fledged tumors, including hepatocellular carcinomas. Thus, our findings indicate that miRNA changes occur prior to tumor formation and are not merely a consequence of a transformed state.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tamoxifeno/toxicidade , Animais , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Feminino , Perfilação da Expressão Gênica , Fígado/citologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos F344 , Tamoxifeno/administração & dosagem
11.
Oncotarget ; 8(51): 88276-88293, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179434

RESUMO

A wide array of central nervous system complications, neurological deficits, and cognitive impairments occur and persist as a result of systemic cancer and cancer treatments. This condition is known as chemo brain and it affects over half of cancer survivors. Recent studies reported that cognitive impairments manifest before chemotherapy and are much broader than chemo brain alone, thereby adding in tumor brain as a component. The molecular mechanisms of chemo brain are under-investigated, and the mechanisms of tumor brain have not been analyzed at all. The frequency and timing, as well as the long-term persistence, of chemo brain and tumor brain suggest they may be epigenetic in nature. MicroRNAs, small, single-stranded non-coding RNAs, constitute an important part of the cellular epigenome and are potent regulators of gene expression. miRNAs are crucial for brain development and function, and are affected by a variety of different stresses, diseases and conditions. However, nothing is known about the effects of extracranial tumor growth or chemotherapy agents on the brain microRNAome. We used the well-established TumorGraft ™ mouse models of triple negative (TNBC) and progesterone receptor positive (PR+BC) breast cancer, and profiled global microRNAome changes in tumor-bearing mice upon chemotherapy, as compared to untreated tumor-bearing mice and intact mice. Our analysis focused on the prefrontal cortex (PFC), based on its roles in memory, learning, and executive functions, and on published data showing the PFC is a target in chemo brain. This is the first study showing that tumor presence alone significantly impacted the small RNAome of PFC tissues. Both tumor growth and chemotherapy treatment affected the small RNAome and altered levels of miRNAs, piRNAs, tRNAs, tRNA fragments and other molecules involved in post-transcriptional regulation of gene expression. Amongst those, miRNA changes were the most pronounced, involving several miRNA families, such as the miR-200 family and miR-183/96/182 cluster; both were deregulated in tumor-bearing and chemotherapy-treated animals. We saw that miRNA deregulation was associated with altered levels of brain-derived neurotrophic factor (BDNF), which plays an important role in cognition and memory and is one of the known miRNA targets. BDNF downregulation has been associated with an array of neurological conditions and could be one of the mechanisms underlying tumor brain and chemo brain. In the future our study could serve as a roadmap for further analysis of cancer and chemotherapy's neural side effects, and differentially expressed miRNAs should be explored as potential tumor brain and chemo brain biomarkers.

12.
Aging (Albany NY) ; 9(7): 1660-1676, 2017 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-28758896

RESUMO

Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Neoplasias Experimentais/patologia , Córtex Pré-Frontal , Animais , Neoplasias da Mama , Metilação de DNA , Metilases de Modificação do DNA , Feminino , Humanos , Camundongos , Estresse Oxidativo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
13.
Aging (Albany NY) ; 8(4): 697-711, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27032448

RESUMO

Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs-cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2'-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis.


Assuntos
Antineoplásicos/farmacologia , Ciclofosfamida/farmacologia , Dano ao DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mitomicina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais
14.
Environ Epigenet ; 2(4): dvw025, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29492301

RESUMO

Studies of Fractionated Exposure to Low Doses of Ionizing Radiation (FELDIR) has become of increasing importance to clinical interventions. Its consequences on DNA damage, physical, and mental health have been insufficiently investigated, however. The goal of this study was to determine the effects of FELDIR on the brain using a mouse model. We addressed the levels of DNA damage, global genomic methylation, and DNA methylation machinery in cerebellum, frontal lobe, olfactory bulb and hippocampal tissues, as well as behavioral changes linked to FELDIR exposure. The results reveal increased levels of DNA damage, as reflected by increased occurrence of DNA Strand Breaks (SBs) and dysregulation of stress-response kinase p38. FELDIR also resulted in initial loss of global genomic methylation and altered expression of methyltransferases DNMT1 (down-regulation) and DNMT3a (up-regulation), as well as methyl-binding protein MeCP2 (up-regulation). FELDIR-associated behavioral changes included impaired skilled limb placement on a ladder rung task, increased rearing activity in an open field, and elevated anxiety-like behaviors. The said alterations showed significant dose and tissue specificity. Thus, FELDIR represents a critical impact on DNA integrity and behavioral outcomes that need to be considered in the design of clinical intervention studies.

15.
Oncotarget ; 6(12): 9937-50, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25888625

RESUMO

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.


Assuntos
Neoplasias Hepáticas/genética , MicroRNAs/genética , Neoplasias Induzidas por Radiação/genética , Fosfoproteínas Fosfatases/genética , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/efeitos da radiação , Regulação para Baixo , Feminino , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Distribuição Aleatória
16.
Cancer Biol Ther ; 14(10): 907-15, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23917379

RESUMO

Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.


Assuntos
Antineoplásicos/toxicidade , Antioxidantes/toxicidade , Lipídeos/toxicidade , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/toxicidade , Caspase 3/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/toxicidade , Lipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteína Homóloga a MRE11 , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
17.
Biomed Opt Express ; 4(4): 559-68, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23577291

RESUMO

Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).

18.
Sci Rep ; 3: 2363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23917523

RESUMO

Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteoma/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Radiação Terahertz , Regulação para Baixo/efeitos da radiação , Humanos , Doses de Radiação
19.
Aging (Albany NY) ; 4(3): 224-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22466454

RESUMO

Clinical evidence suggests that stroke may lead to damage of somatic organs. This communication of damage is well- established in the case of exposure to genotoxic agents is termed a bystander effect. Genotoxic stress-induced bystander effects are epigenetically mediated. Here we investigated whether stroke causes epigenetic bystander-like effects in the liver, kidney and heart. We found a significant increase in the levels of H3K3 acetylation and H3K4 trimethylation, as well as a decrease in the H3K9 trimethylation in the kidney tissue of stroked rats. Furthermore, here we for the first time show changes in the gene and microRNA expression profile in the kidney tissues of stroked rats, as compared to intact control animals. Interestingly, the observed changes were somewhat similar to those reported earlier in kidney injury, inflammation, and acute renal failure. Our data explain the recent epidemiological evidence for the increased incidence of acute kidney injury post-stroke and provide an important roadmap for the future analysis of the mechanisms and cellular repercussions of the stroke-induced bystander-like effects in distal somatic organs.


Assuntos
Efeito Espectador/genética , Epigênese Genética , Rim/metabolismo , Acidente Vascular Cerebral/genética , Acetilação , Animais , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Fígado/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Metilação , MicroRNAs/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Long-Evans , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
20.
Carcinogenesis ; 28(8): 1831-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17347136

RESUMO

Radiation therapy is a primary treatment modality for brain tumors, yet it has been linked to the increased incidence of secondary, post-radiation therapy cancers. These cancers are thought to be linked to indirect radiation-induced bystander effect. Bystander effect occurs when irradiated cells communicate damage to nearby, non-irradiated 'bystander' cells, ultimately contributing to genome destabilization in the non-exposed cells. Recent evidence suggests that bystander effect may be epigenetic in nature; however, characterization of epigenetic mechanisms involved in bystander effect generation and its long-term persistence has yet to be defined. To investigate the possibility that localized X-ray irradiation induces persistent bystander effects in distant tissue, we monitored the induction of epigenetic changes (i.e. alterations in DNA methylation, histone methylation and microRNA (miRNA) expression) in the rat spleen tissue 24 h and 7 months after localized cranial exposure to 20 Gy of X-rays. We found that localized cranial radiation exposure led to the induction of bystander effect in lead-shielded, distant spleen tissue. Specifically, this exposure caused the profound epigenetic dysregulation in the bystander spleen tissue that manifested as a significant loss of global DNA methylation, alterations in methylation of long interspersed nucleotide element-1 (LINE-1) retrotransposable elements and down-regulation of DNA methyltransferases and methyl-binding protein methyl CpG binding protein 2 (MeCP2). Further, irradiation significantly altered expression of miR-194, a miRNA putatively targeting both DNA methyltransferase-3a and MeCP2. This study is the first to report conclusive evidence of the long-term persistence of bystander effects in radiation carcinogenesis target organ (spleen) upon localized distant exposure using the doses comparable with those used for clinical brain tumor treatments.


Assuntos
Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Epigênese Genética/efeitos da radiação , Baço/fisiologia , Baço/efeitos da radiação , Animais , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , DNA Metiltransferase 3A , Humanos , Masculino , Modelos Animais , Ratos , Ratos Long-Evans , Fatores de Tempo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA