Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542294

RESUMO

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Assuntos
Dermatite , Radiodermite , Neoplasias Cutâneas , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Pele/patologia , Radiodermite/patologia , Dermatite/patologia , Neoplasias Cutâneas/patologia , Quimiocinas/metabolismo
2.
PLoS Pathog ; 13(6): e1006406, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640877

RESUMO

Patients suffering from Epidermodysplasia verruciformis (EV), a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV), such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203), a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα), a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPß expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent mechanism, by which the cutaneous HPV8 E6 protein may expand p63-positive cells in the epidermis of EV-patients and disturbs fundamental keratinocyte functions. This may drive HPV-mediated pathogenesis and may potentially also pave the way for skin carcinogenesis in EV-patients.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transformação Celular Viral/genética , Regulação da Expressão Gênica/fisiologia , Queratinócitos/virologia , MicroRNAs/biossíntese , Proteínas Oncogênicas Virais/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Epidermodisplasia Verruciforme/complicações , Epidermodisplasia Verruciforme/virologia , Humanos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Queratinócitos/metabolismo , Infecções por Papillomavirus/complicações , Reação em Cadeia da Polimerase em Tempo Real
3.
Blood ; 123(13): 1980-1, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24677401

RESUMO

In this issue of Blood, Yakimchuk and colleagues show that estrogen receptor ß (ERß) signaling can act tumor-suppressive predominantly through the regulation of genes by ERß in the tumor, not in the microenvironment, and point out new therapeutic strategies.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Receptor beta de Estrogênio/agonistas , Linfoma/tratamento farmacológico , Linfoma/patologia , Neovascularização Patológica/tratamento farmacológico , Nitrilas/uso terapêutico , Propionatos/uso terapêutico , Animais , Humanos , Masculino
4.
Nucleic Acids Res ; 42(6): 3565-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24413661

RESUMO

NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ubiquitinação
5.
Nutrients ; 16(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257148

RESUMO

BACKGROUND: Increasing evidence points at an important physiological role of the timekeeping system, known as the circadian clock (CC), regulating not only our sleep-awake rhythm but additionally many other cellular processes in peripheral tissues. It was shown in various cell types that environmental stressors, including ultraviolet B radiation (UV-B), modulate the expression of genes that regulate the CC (CCGs) and that these CCGs modulate susceptibility for UV-B-induced cellular damage. It was the aim of this pilot study to gain further insights into the CCs' putative role for UV-B-induced photocarcinogenesis of skin cancer. METHODS: Applying RT-PCR, we analyzed the expression of two core CCGs (brain and muscle ARNT-like 1 (Bmal1) and Period-2 (Per2)) over several time points (0-60 h) in HaCaT cells with and without 1,25-dihydroxyvitamin D (D3) and/or UV-B and conducted a cosinor analysis to evaluate the effects of those conditions on the circadian rhythm and an extended mixed-effects linear modeling to account for both fixed effects of experimental conditions and random inter-individual variability. Next, we investigated the expression of these two genes in keratinocytes representing different stages of skin photocarcinogenesis, comparing normal (Normal Human Epidermal Keratinocytes-NHEK; p53 wild type), precancerous (HaCaT keratinocytes; mutated p53 status), and malignant (Squamous Cell Carcinoma SCL-1; p53 null status) keratinocytes after 12 h under the same conditions. RESULTS: We demonstrated that in HaCaT cells, Bmal1 showed a robust circadian rhythm, while the evidence for Per2 was limited. Overall expression of both genes, but especially for Bmal1, was increased following UV-B treatment, while Per2 showed a suppressed overall expression following D3. Both UVB and 1,25(OH)2D3 suggested a significant phase shift for Bmal1 (p < 0.05 for the acrophase), while no specific effect on the amplitude could be evidenced. Differential effects on the expression of BMAL1 and Per2 were found when we compared different treatment modalities (UV-B and/or D3) or cell types (NHEK, HaCaT, and SCL-1 cells). CONCLUSIONS: Comparing epidermal keratinocytes representing different stages of skin photocarcinogenesis, we provide further evidence for an independently operating timekeeping system in human skin, which is regulated by UV-B and disturbed during skin photocarcinogenesis. Our finding that this pattern of circadian rhythm was differentially altered by treatment with UV-B, as compared with treatment with D3, does not support the hypothesis that the expression of these CCGs may be regulated via UV-B-induced synthesis of vitamin D but might be introducing a novel photoprotective property of vitamin D through the circadian clock.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/genética , Projetos Piloto , Fatores de Transcrição ARNTL/genética , Proteína Supressora de Tumor p53 , Vitamina D
6.
Front Cell Infect Microbiol ; 14: 1336492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510961

RESUMO

Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)ß to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.


Assuntos
Quimiocina CCL2 , Epidermodisplasia Verruciforme , MicroRNAs , Animais , Humanos , Camundongos , Quimiocina CCL2/metabolismo , Epidermodisplasia Verruciforme/metabolismo , Papillomavirus Humano , Queratinócitos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Cancer Immunol Immunother ; 62(7): 1211-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23619976

RESUMO

EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.


Assuntos
Antígenos de Neoplasias/análise , Linfócitos B/virologia , Vacinas Anticâncer/imunologia , Neoplasias/terapia , Células Apresentadoras de Antígenos/imunologia , Azacitidina/farmacologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Interferon gama/imunologia , Melanoma , RNA Mensageiro/biossíntese , Telomerase/metabolismo , Telômero , Fator de Necrose Tumoral alfa/imunologia , Ácido Valproico/farmacologia , Vorinostat
8.
J Cancer Res Clin Oncol ; 149(7): 3623-3635, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35963900

RESUMO

PURPOSE: Strategies for Indolamine-2,3-dioxygenase 1 (IDO1) inhibition in cancer immunotherapy once produced encouraging results, but failed in clinical trials. Recent evidence indicates that immune cells in the tumour microenvironment, especially macrophages, contribute to immune dysregulation and therefore might play a critical role in drug resistance. METHODS: In this study, we investigated the significance of IDO1 expressing immune cells in primary tumours and corresponding lymph node metastases (LNMs) in oral squamous cell carcinoma (OSCC) by immunohistochemistry. The link between IDO1 and macrophages was investigated by flow cytometry in tumour tissue, healthy adjacent tissue and peripheral blood mononuclear cells (PBMCs). IDO1 activity (measured as Kynurenine/Tryptophan ratio) was assessed by ELISAs. RESULTS: High IDO1 expression in tumour-infiltrating immune cells was significantly correlated with advanced stages [Spearman's rank correlation (SRC), p = 0.027] and reduced progression-free survival (multivariate Cox regression, p = 0.034). IDO1 was significantly higher expressed in PBMCs of patients in advanced stages than in healthy controls (ANOVA, p < 0.05) and IDO1+ macrophages were more abundant in intratumoural areas than peritumoural (t test, p < 0.001). IDO1 expression in PBMCs was significantly correlated with IDO1 activity in serum (SRC, p < 0.05). IDO1 activity was significantly higher in patients with LNMs (t test, p < 0.01). CONCLUSION: All in all, IDO1 expressing immune cells, especially macrophages, are more abundant in advanced stages of OSCC and are associated with reduced progression-free survival. Further investigations are needed to explore their role in local and systemic immune response. The IDO1 activity might be a suitable biomarker of metastasis in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Leucócitos Mononucleares/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Microambiente Tumoral
9.
Nucleic Acids Res ; 38(10): 3159-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20123734

RESUMO

p63 Is a sequence-specific transcription factor that regulates epithelial stem cell maintenance and epithelial differentiation. In addition, the TAp63 isoform with an N-terminal transactivation domain functions as an inducer of apoptosis during the development of sympathetic neurons. Previous work has indicated that the co-activator and histone acetyltransferase (HAT), p300, can bind to TAp63 and stimulate TAp63-dependent transcription of the p21Cip1 gene. Novel INHAT Repressor (NIR) is an inhibitor of HAT. Here, we report that the central portion of NIR binds to the transactivation domain and the C-terminal oligomerization domain of TAp63. NIR is highly expressed in G2/M phase of the cell cycle and only weakly expressed in G1/S. Furthermore, except during mitosis, NIR is predominantly localized in the nucleolus; only a small portion co-localizes with TAp63 in the nucleoplasm and at the p21 gene promoter. Consistent with NIR acting as a repressor, the induced translocation of NIR from the nucleolus into the nucleoplasm resulted in the inhibition of TAp63-dependent transactivation of p21. Conversely, knockdown of NIR by RNAi stimulated p21 transcription in the presence of TAp63. Thus, NIR is a cell-cycle-controlled, novel negative regulator of TAp63. The low levels of nucleoplasmic NIR might act as a buffer toward potentially toxic TAp63.


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Transativadores/antagonistas & inibidores , Nucléolo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/metabolismo , Humanos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transativadores/metabolismo , Ativação Transcricional
10.
Adv Exp Med Biol ; 727: 223-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22399351

RESUMO

Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Camundongos , Proteína Tumoral p73
11.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230558

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is suggested to hamper antitumor immune response in multiple cancers. However, the role of TREM2 in oral squamous cell carcinoma (OSCC) and its expression in tumor-associated macrophages (TAMs) are unknown. In this study, TREM2 expression was analyzed in the primary tumors and corresponding lymph-node metastases of OSCC patients via immunohistochemistry on tissue microarrays. Human peripheral blood mononuclear cells (PBMCs) and single-cell suspensions of tumor and healthy adjacent tissues were analyzed for the presence of TREM2+ macrophages and TAMs using flow cytometry. The serum levels of soluble TREM2 (sTREM2) were quantified using an enzyme-linked immunosorbent assay. High TREM2 expression was associated with advanced UICC stages (Spearman's rank correlation (SRC), p = 0.04) and significantly reduced survival rates in primary tumors (multivariate Cox regression, progression-free survival: hazard ratio (HR) of 2.548, 95% confidence interval (CI) of 1.089−5.964, p = 0.028; overall survival: HR of 2.17, 95% CI of 1.021−4.613, p = 0.044). TREM2 expression was significantly increased in the PBMCs of OSCC patients in UICC stage IV compared with healthy controls (ANOVA, p < 0.05). The serum levels of sTREM2 were higher in advanced UICC stages, but they narrowly missed significance (SRC, p = 0.059). We demonstrated that TREM2 was multi-factorially associated with advanced stages and inferior prognosis in OSCC patients and that it could serve as a prognostic biomarker in OSCC patients. Targeting TREM2 has the potential to reshape the local and systemic immune landscape for the potential enhancement of patients' prognosis.

12.
EJHaem ; 3(3): 739-747, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051037

RESUMO

Burkitt lymphoma (BL) represents the most aggressive B-cell-lymphoma. Beside the hallmark of IG-MYC-translocation, surface B-cell receptor (BCR) is expressed, and mutations in the BCR pathway are frequent. Coincidental infections in endemic BL, and specific extra-nodal sites suggest antigenic triggers. To explore this hypothesis, BCRs of BL cell lines and cases were screened for reactivities against a panel of bacterial lysates, lysates of Plasmodium falciparum, a custom-made virome array and against self-antigens, including post-translationally modified antigens. An atypically modified, SUMOylated isoform of Bystin, that is, SUMO1-BYSL was identified as the antigen of the BCR of cell line CA46. SUMO1-BYSL was exclusively expressed in CA46 cells with K139 as site of the SUMOylation. Secondly, an atypically acetylated isoform of HSP40 was identified as the antigen of the BCR of cell line BL41. K104 and K179 were the sites of immunogenic acetylation, and the acetylated HSP40 isoform was solely present in BL41 cells. Functionally, addition of SUMO1-BYSL and acetylated HSP40 induced BCR pathway activation in CA46 and BL41 cells, respectively. Accordingly, SUMO1-BYSL-ETA' immunotoxin, produced by a two-step intein-based conjugation, led to the specific killing of CA46 cells. Autoantibodies directed against SUMO1-BYSL were found in 3 of 14 (21.4%), and autoantibodies against acetylated HSP40 in 1/14(7.1%) patients with sporadic Burkitt-lymphoma. No reactivities against antigens of the infectious agent spectrum could be observed. These results indicate a pathogenic role of autoreactivity evoked by immunogenic post-translational modifications in a subgroup of sporadic BL including two EBV-negative BL cell lines.

13.
Lancet Rheumatol ; 4(5): e329-e337, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35368387

RESUMO

Background: Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious complication of infection with SARS-CoV-2. A possible involvement of pathogenetically relevant autoantibodies has been discussed. Recently, neutralising autoantibodies against inflammatory receptor antagonists progranulin and interleukin-1 receptor antagonist (IL-1Ra) were found in adult patients with critical COVID-19. The aim of this study was to investigate the role of such autoantibodies in MIS-C. Methods: In this multicentre, retrospective, cohort study, plasma and serum samples were collected from patients (0-18 years) with MIS-C (as per WHO criteria) treated at five clinical centres in Germany and Spain. As controls, we included plasma or serum samples from children with Kawasaki disease, children with inactive systemic juvenile idiopathic arthritis, and children with suspected growth retardation (non-inflammatory control) across four clinical centres in Germany and Spain (all aged ≤18 years). Serum samples from the CoKiBa trial were used as two further control groups, from healthy children (negative for SARS-CoV-2 antibodies) and children with previous mild or asymptomatic COVID-19 (aged ≤17 years). MIS-C and control samples were analysed for autoantibodies against IL-1Ra and progranulin, and for IL-1Ra concentrations, by ELISA. Biochemical analysis of plasma IL-1Ra was performed with native Western blots and isoelectric focusing. Functional activity of the autoantibodies was examined by an in vitro IL-1ß-signalling reporter assay. Findings: Serum and plasma samples were collected between March 6, 2011, and June 2, 2021. Autoantibodies against IL-1Ra could be detected in 13 (62%) of 21 patients with MIS-C (11 girls and ten boys), but not in children with Kawasaki disease (n=24; nine girls and 15 boys), asymptomatic or mild COVID-19 (n=146; 72 girls and 74 boys), inactive systemic juvenile idiopathic arthritis (n=10; five girls and five boys), suspected growth retardation (n=33; 13 girls and 20 boys), or in healthy controls (n=462; 230 girls and 232 boys). Anti-IL-1Ra antibodies in patients with MIS-C belonged exclusively to the IgG1 subclass, except in one patient who had additional IL-1Ra-specific IgM antibodies. Autoantibodies against progranulin were only detected in one (5%) patient with MIS-C. In patients with MIS-C who were positive for anti-IL-1Ra antibodies, free plasma IL-1Ra concentrations were reduced, and immune-complexes of IL-1Ra were detected. Notably, an additional, hyperphosphorylated, transiently occurring atypical isoform of IL-1Ra was observed in all patients with MIS-C who were positive for anti-IL-1Ra antibodies. Anti-IL-1Ra antibodies impaired IL-1Ra function in reporter cell assays, resulting in amplified IL-1ß signalling. Interpretation: Anti-IL-1Ra autoantibodies were observed in a high proportion of patients with MIS-C and were specific to these patients. Generation of these autoantibodies might be triggered by an atypical, hyperphosphorylated isoform of IL-1Ra. These autoantibodies impair IL-1Ra bioactivity and might thus contribute to increased IL-1ß-signalling in MIS-C. Funding: NanoBioMed fund of the University of Saarland, José Carreras Center for Immuno and Gene Therapy, Dr Rolf M Schwiete Stiftung, Staatskanzlei Saarland, German Heart Foundation, Charity of the Blue Sisters, Bavarian Ministry of Health, the Center for Interdisciplinary Clinical Research at University Hospital Münster, EU Horizon 2020.

14.
J Neurooncol ; 104(3): 715-27, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21607667

RESUMO

Previous results had documented oncolytic capacity of reovirus, parvovirus and Newcastle disease virus (NDV) on several tumor cell types. To test whether combinations of these viruses may increase this capacity, human U87- and U373-glioblastoma cells, in vitro or xenografted into immuno-compromised mice, were subjected to simultaneous double infections and analyzed. Our results show that reovirus (serotype-3) plus NDV (Hitcher-B1) and reovirus plus parvovirus-H1 lead to a significant increase in tumor cell killing in vitro in both cell lines (Kruskal-Wallis test, P < 0.01) and in vivo. Immunofluorescence and flow cytometry analyses demonstrated the simultaneous replication of the viruses in nearly all cells (>95%) after combined infection. These data thus indicate that a synergistic anti-tumor effect can be achieved by the combined infection with oncolytic viruses.


Assuntos
Glioma/virologia , Vírus da Doença de Newcastle/fisiologia , Vírus Oncolíticos/fisiologia , Parvovirus/fisiologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Neoplasias Encefálicas , Morte Celular , Linhagem Celular Tumoral , Meios de Cultura , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Glioma/patologia , Humanos , Camundongos , Camundongos SCID , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Parvovirus/genética , Sais de Tetrazólio , Tiazóis , Carga Viral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
J Gen Virol ; 91(Pt 6): 1494-502, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20147518

RESUMO

More than 2000 human endogenous retrovirus (HERV) sequences are present in the human genome, yet only a few are intact and able to produce proteins. The normal functions of these, if any, are unknown, but some HERV proteins have been implicated in cancers, in particular germ-cell cancers. For instance, it has been documented that (i) patients with germ-cell tumours frequently produce antibodies against HERV proteins; (ii) transgenic mice expressing HERV-K (HML-2) rec are prone to testicular carcinoma in situ; and (iii) Rec can bind and suppress a guardian of germline stem-cell pluripotency, the promyelocytic leukaemia zinc-finger protein (PLZF). This study identified the PLZF-related testicular zinc-finger protein (TZFP) as a binding partner of HERV-K (HML-2) Rec. Interactions occurred via the N- and C-terminal domains of Rec and the C-terminal DNA-binding zinc-finger domain of TZFP (aa 375-450). Not much is known about the function of TZFP. The protein is expressed predominantly in the testis, where it functions as a transcriptional repressor that is active during specific stages of spermatogenesis. The most intensely studied function of TZFP is that of a co-repressor of the activated androgen receptor (AR). Here, it was shown that Rec can form a trimeric complex with TZFP and AR, and can relieve the TZFP-mediated repression of AR-induced transactivation. In addition, Rec was able to overcome the direct transcriptional repression by TZFP of the c-myc gene promoter in reporter assays. Thus, HERV-K (HML-2) Rec may function as an oncoprotein by de-repressing oncogenic transcription factors such as AR.


Assuntos
Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas do Envelope Viral/metabolismo , Humanos , Ligação Proteica
16.
Rheumatol Int ; 30(10): 1273-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19779722

RESUMO

Psoriasis (Ps), psoriatic arthritis (PsA), and SAPHO syndrome are diseases of unknown etiology that share common clinical features; however, family studies support the hypothesis of a genetic background for each of these diseases. To study the two common single-nucleotide polymorphisms (SNP) in the murine-double-minute-2-(Mdm2) and p53 genes in patients with Ps, PsA, and SAPHO syndrome. Genomic DNA was obtained from 187 patients with Ps, 50 with PsA, and 36 with SAPHO as well as 478 healthy controls. Mdm2-gene SNP T309G and p53-gene SNP G72C genotypes were determined by the polymerase chain reaction. Genotype and allele frequencies were analyzed with chi(2)-tests. Among the patients with Ps and PsA, no differences in allele or genotype frequencies of the p53-gene SNP G72C and Mdm2-gene SNP T309G were detected. However, in the SAPHO patients group, the frequencies of the Mdm2 SNP309 G allele and the genotype SNP 309 GG were significantly increased compared with the controls (G allele: 51.4 vs. 38.7%, P = 0.034; genotype GG: 36.1 vs. 14.2%, P = 0.002). In addition, the frequencies of the p53 SNP72 C allele and the genotype SNP 72 CC were also increased in the SAPHO patients cohort (C allele: 36.1 vs. 25.6%, P = 0.05; genotype CC: 16.7 vs. 6.3%, P = 0.05). SAPHO syndrome may be linked to an imbalance between MDM2 and p53 regulation with a "weak" p53-response associated with the Mdm2 SNP 309 G allele. In contrast, the p53 network does not seem to play a major role in pathogenesis of Ps or PsA.


Assuntos
Síndrome de Hiperostose Adquirida/genética , Artrite Psoriásica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/genética , Psoríase/genética , Proteína Supressora de Tumor p53/genética , Síndrome de Hiperostose Adquirida/metabolismo , Adolescente , Adulto , Idoso , Artrite Psoriásica/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Psoríase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
17.
Nucleic Acids Res ; 36(2): 666-75, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18073197

RESUMO

MicroRNAs (miRNAs) have been implicated in sequence-specific cleavage, translational repression or deadenylation of specific target mRNAs resulting in post-transcriptional gene silencing. Epstein-Barr virus (EBV) encodes 23 miRNAs of unknown function. Here we show that the EBV-encoded miRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. MiR-BART2 guides cleavage within the 3'-untranslated region (3'UTR) of BALF5 by virtue of its complete complementarity to its target. Induction of the lytic viral replication cycle results in a reduction of the level of miR-BART2 with a strong concomitant decrease of cleavage of the BALF5 3'UTR. Expression of miR-BART2 down-regulates the activity of a luciferase reporter gene containing the BALF5 3'UTR. Forced expression of miR-BART2 during lytic replication resulted in a 40-50% reduction of the level of BALF5 protein and a 20% reduction of the amount of virus released from EBV-infected cells. Our results are compatible with the notion that EBV-miR-BART2 inhibits transition from latent to lytic viral replication.


Assuntos
Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , MicroRNAs/metabolismo , Interferência de RNA , Proteínas Virais/genética , Regiões 3' não Traduzidas/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Regulação para Baixo , Herpesvirus Humano 4/fisiologia , Humanos , Luciferases/análise , Luciferases/genética , MicroRNAs/genética , Ratos , Proteínas Virais/metabolismo , Replicação Viral
18.
Mol Cancer ; 7: 54, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18547443

RESUMO

BACKGROUND: Mutation of a tumor suppressor allele leaves the second as backup. Not necessarily so with p53. This homo-tetrameric transcription factor can become contaminated with mutant p53 through hetero-tetramerization. In addition, it can be out-competed by the binding to p53 DNA recognition motifs of transactivation-incompetent isoforms (DeltaN and DeltaTA-isoforms) of the p53/p63/p73 family of proteins. Countermeasures against such dominant-negative or dominant-inhibitory action might include the evolutionary gain of novel, transactivation-independent tumor suppressor functions by the wild-type monomer. RESULTS: Here we have studied, mostly in human HCT116 colon adenocarcinoma cells with an intact p53 pathway, the effects of dominant-inhibitory p53 mutants and of Deltaex2/3p73, a tumor-associated DeltaTA-competitor of wild-type p53, on the nuclear transactivation-dependent and extra-nuclear transactivation-independent functions of wild-type p53. We report that mutant p53 and Deltaex2/3p73, expressed from a single gene copy per cell, interfere with the stress-induced expression of p53-responsive genes but leave the extra-nuclear apoptosis by mitochondrial p53 largely unaffected, although both wild-type and mutant p53 associate with the mitochondria. In accord with these observations, we present evidence that in contrast to nuclear p53 the vast majority of mitochondrial p53, be it wild-type or mutant, is consisting of monomeric protein. CONCLUSION: The extra-nuclear p53-dependent apoptosis may constitute a fail-safe mechanism against dominant inhibition.


Assuntos
Apoptose , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Alfa-Amanitina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Etoposídeo/farmacologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Genes Dominantes , Células HCT116 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Tempo , Ativação Transcricional , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
19.
BMC Cancer ; 8: 116, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18433491

RESUMO

BACKGROUND: SNP309 T/G (rs2279744) causes higher levels of MDM2, the most important negative regulator of the p53 tumor suppressor. SNP72 G/C (rs1042522) gives rise to a p53 protein with a greatly reduced capacity to induce apoptosis. Both polymorphisms have been implicated in cancer. The SNP309 G-allele has recently been reported to accelerate diffuse large B-cell lymphoma (DLBCL) formation in pre-menopausal women and suggested to constitute a genetic basis for estrogen affecting human tumorigenesis. Here we asked whether SNP309 and SNP72 are associated with DLBCL in women and are correlated with age of onset, diagnosis, or patient's survival. METHODS: SNP309 and SNP72 were PCR-genotyped in a case-control study that included 512 controls and 311 patients diagnosed with aggressive NHL. Of these, 205 were diagnosed with DLBCL. RESULTS: The age of onset was similar in men and women. The control and patients group showed similar SNP309 and SNP72 genotype frequencies. Importantly and in contrast to the previous findings, similar genotype frequencies were observed in female patients diagnosed by 51 years of age and those diagnosed later. Specifically, 3/20 female DLBCL patients diagnosed by 51 years of age were homozygous for SNP309 G and 2/20 DLBCL females in that age group were homozygous for SNP72 C. Neither SNP309 nor SNP72 had a significant influence on event-free and overall survival in multivariate analyses. CONCLUSION: In contrast to the previous study on Ashkenazi Jewish Caucasians, DLBCL in pre-menopausal women of central European Caucasian ethnicity was not associated with SNP309 G. Neither SNP309 nor SNP72 seem to be correlated with age of onset, diagnosis, or survival of patients.


Assuntos
Genes p53 , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Proteínas Proto-Oncogênicas c-mdm2/genética , População Branca/genética , Adolescente , Adulto , Idade de Início , Idoso , Estudos de Casos e Controles , Análise Mutacional de DNA/métodos , Sondas de DNA , Feminino , Alemanha/etnologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Análise de Sobrevida
20.
Anticancer Res ; 38(2): 1209-1216, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29374759

RESUMO

While nuclear cofactors that contribute to vitamin D receptor (VDR)-mediated gene transcription, including retinoid X receptors, nuclear co-activators and co-repressors, have been extensively investigated, little is known about cytoplasmic VDR-binding partners and the physiological relevance of their interaction. To gain new insight into this topic, we isolated whole-cell protein extracts of 1,25-dihydroxyvitamin D3 stimulated and UV-B-irradiated vs. non-irradiated HEK 293T cells transfected with a plasmid called pURB VDR C-Term TAP tag. VDR complex was purified by tandem affinity purification (TAP). The nuclear tumor-suppressor protein p53 and its negative regulator novel INHAT repressor (NIR), in addition to 43 other nuclear or cytoplasmatic VDR binding partners, were identified using nano high-performance liquid chromatography-electrospray ionization tandem mass spectrometric analysis. VDR binding to p53 was confirmed by western blot analysis. Future studies are required to further elucidate the functional significance of these interactions.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Mapas de Interação de Proteínas , Receptores de Calcitriol/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Proteína Supressora de Tumor p53/metabolismo , Células HEK293 , Humanos , Nanotecnologia , Ligação Proteica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA