Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 52(1): 141, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801064

RESUMO

Chlamydia psittaci was considered the predominant chlamydial species in poultry until Chlamydia gallinacea was discovered in 2009. C. psittaci is a zoonotic obligate intracellular bacterium reported in more than 465 bird species including poultry. In poultry, infections can result in asymptomatic disease, but also in more severe systemic illness. The zoonotic potential of C. gallinacea has yet to be proven. Infections in poultry appear to be asymptomatic and in recent prevalence studies C. gallinacea was the main chlamydial species found in chickens. The high prevalence of C. gallinacea resulted in the question if an infection with C. gallinacea might protect against an infection with C. psittaci. To investigate possible cross protection, chickens were inoculated with C. gallinacea NL_G47 and subsequently inoculated with either a different strain of C. gallinacea (NL_F725) or C. psittaci. Chickens that had not been pre-inoculated with C. gallinacea NL_G47 were used as a C. gallinacea or C. psittaci infection control. In the groups that were inoculated with C. psittaci, no difference in pharyngeal or cloacal shedding, or in tissue dissemination was observed between the control group and the pre-inoculated group. In the groups inoculated with C. gallinacea NL_F725, shedding in cloacal swabs and tissues dissemination was lower in the group pre-inoculated with C. gallinacea NL_G47. These results indicate previous exposure to C. gallinacea does not protect against an infection with C. psittaci, but might protect against a new infection of C. gallinacea.


Assuntos
Infecções por Chlamydia , Chlamydia , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/veterinária , Chlamydophila psittaci , Doenças das Aves Domésticas/prevenção & controle
2.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037794

RESUMO

Cytokine responses of chronic Q fever patients to the intracellular bacterium Coxiella burnetii have mostly been studied using ex vivo stimulation of immune cells with heat-killed C. burnetii due to the extensive measures needed to work with viable biosafety level 3 agents. Whether research with heat-killed C. burnetii can be translated to immune responses to viable C. burnetii is imperative for the interpretation of previous and future studies with heat-killed C. burnetii Peripheral blood mononuclear cells (PBMCs) of chronic Q fever patients (n = 10) and healthy controls (n = 10) were stimulated with heat-killed or viable C. burnetii of two strains, Nine Mile and the Dutch outbreak strain 3262, for 24 h, 48 h, and 7 days in the absence or presence of serum containing anti-C. burnetii antibodies. When stimulated with viable C. burnetii, PBMCs of chronic Q fever patients and controls produced fewer proinflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor alpha, and IL-1ß) after 24 h than after stimulation with heat-killed C. burnetii In the presence of Q fever seronegative serum, IL-10 production was higher after stimulation with viable rather than heat-killed C. burnetii; however, when incubating with anti-C. burnetii antibody serum, the effect on IL-10 production was reduced. Levels of adaptive, merely T-cell-derived cytokine (gamma interferon, IL-17, and IL-22) and CXCL9 production were not different between heat-killed and viable C. burnetii stimulatory conditions. Results from previous and future research with heat-killed C. burnetii should be interpreted with caution for innate cytokines, but heat-killed C. burnetii-induced adaptive cytokine production is representative of stimulation with viable bacteria.


Assuntos
Coxiella burnetii/imunologia , Citocinas/imunologia , Febre Q/imunologia , Anticorpos Antibacterianos/imunologia , Coxiella burnetii/genética , Coxiella burnetii/crescimento & desenvolvimento , Citocinas/genética , Feminino , Temperatura Alta , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Viabilidade Microbiana , Febre Q/genética , Febre Q/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
3.
Euro Surveill ; 22(35)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28877846

RESUMO

Tularaemia, a disease caused by the bacterium Francisella tularensis, is a re-emerging zoonosis in the Netherlands. After sporadic human and hare cases occurred in the period 2011 to 2014, a cluster of F. tularensis-infected hares was recognised in a region in the north of the Netherlands from February to May 2015. No human cases were identified, including after active case finding. Presence of F. tularensis was investigated in potential reservoirs and transmission routes, including common voles, arthropod vectors and surface waters. F. tularensis was not detected in common voles, mosquito larvae or adults, tabanids or ticks. However, the bacterium was detected in water and sediment samples collected in a limited geographical area where infected hares had also been found. These results demonstrate that water monitoring could provide valuable information regarding F. tularensis spread and persistence, and should be used in addition to disease surveillance in wildlife.


Assuntos
Surtos de Doenças , Monitoramento Ambiental , Lebres/microbiologia , Tularemia/epidemiologia , Animais , Francisella tularensis , Países Baixos/epidemiologia , Tularemia/microbiologia , Tularemia/veterinária
4.
Cytokine ; 77: 196-202, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26364993

RESUMO

Coxiella burnetii, the causative agent of Q fever, is recognized by TLR2. TLR10 can act as an inhibitory receptor on TLR2-derived immune responses. Therefore, we investigated the role of TLR10 on C. burnetii-induced cytokine production and assessed whether genetic polymorphisms in TLR10 influences the development of chronic Q fever. HEK293 cells, transfected with TLR2, TLR10 or TLR2/TLR10, and human peripheral blood mononuclear cells (PBMCs) in the presence of anti-TLR10, were stimulated with C. burnetii. In both assays, the absence of TLR10 resulted in increased cytokine responses after C. burnetii stimulation. In addition, the effect of single nucleotide polymorphisms (SNPs) in TLR10 was examined in healthy volunteers whose PBMCs were stimulated with C. burnetii Nine Mile or the Dutch outbreak isolate C. burnetii 3262. Individuals bearing SNPs in TLR10 displayed increased cytokine production upon C. burnetii 3262 stimulation. Furthermore, 139 chronic Q fever patients and 220 controls were genotyped for TLR10 N241H, I775V and I369L. None of these polymorphisms were associated with increased susceptibility to chronic Q fever. In conclusion, TLR10 has an inhibitory effect on in vitro cytokine production by C. burnetii, but the presence of TLR10 polymorphisms does not lead to an increased risk of developing chronic Q fever.


Assuntos
Citocinas/metabolismo , Polimorfismo de Nucleotídeo Único , Febre Q/genética , Receptor 10 Toll-Like/genética , Adulto , Idoso , Células Cultivadas , Coxiella burnetii/classificação , Coxiella burnetii/fisiologia , Feminino , Frequência do Gene , Genótipo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Febre Q/metabolismo , Febre Q/microbiologia , Fatores de Risco , Especificidade da Espécie , Adulto Jovem
5.
J Infect Dis ; 211(6): 978-87, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25246533

RESUMO

BACKGROUND: Infection with Coxiella burnetii can lead to acute and chronic Q fever. Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR6, nucleotide-binding oligomerization domain receptor 1 (NOD1), NOD2, and the mitogen-activated protein kinases are central in the innate immune response against microorganisms, but little is known about their role in the recognition of C. burnetii in humans. METHODS: Human peripheral blood mononuclear cells (PBMCs) were stimulated with C. burnetii Nine Mile and the Dutch outbreak isolate C. burnetii 3262. TLRs were inhibited using specific antibodies or antagonists. Additionally, the influence of human polymorphisms in TLRs and Nod-like receptors (NLRs) on C. burnetii-induced cytokine production was assessed. RESULTS: Inhibition of TLR2, p38, JNK, and ERK led to decreased cytokine responses in C. burnetii-stimulated human PBMCs. Humans with polymorphisms in TLR1 and NOD2 had reduced cytokine production, compared with humans with wild-type genotypes, after stimulation. Interestingly, polymorphisms in TLR6 led to decreased cytokine production after C. burnetii 3262 stimulation but not after C. burnetii Nine Mile stimulation. CONCLUSIONS: The TLR1/TLR2 heterodimer and NOD2 are important recognition receptors for the induction of cytokine responses against C. burnetii in humans. Furthermore, an interesting finding was the divergent recognition of C. burnetii Nine Mile and C. burnetii 3262.


Assuntos
Coxiella burnetii/imunologia , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Receptores Toll-Like/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Imunidade Celular , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
6.
Int J Environ Health Res ; 24(2): 137-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23802588

RESUMO

We analyzed the Q fever epidemic in the Netherlands on a national scale from a spatial point of view. Data on dairy goat farms and Dutch population, whether or not infected, were geo-referenced. Human cases were counted in GIS at different distance classes for all dairy goat farms, farms with Q fever based on BTM analysis, and farms with clinical symptoms. In all selections, human incidence decreased with increasing distances from dairy goat farms. Incidence was highest around farms with clinical symptoms. Depending on the acceptable incidence value, a dairy goat-free zone around residential areas could be defined. Cluster analyses were performed to identify local clusters of both infected farms and human cases and to identify focused clusters of human cases. Focused clusters were detected for only 14 out of 29 farms with clinical symptoms, giving rise to a new hypothesis on the transmission of Q fever.


Assuntos
Surtos de Doenças , Febre Q/epidemiologia , Animais , Indústria de Laticínios , Sistemas de Informação Geográfica , Geografia , Cabras , Incidência , Países Baixos/epidemiologia , Febre Q/transmissão
7.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39057747

RESUMO

The application of a One Health approach recognizes that human health, animal health, plant health and ecosystem health are intrinsically connected. Tackling complex challenges associated with foodborne zoonoses, antimicrobial resistance, and emerging threats is imperative. Therefore, the One Health European Joint Programme was established within the European Union research programme Horizon 2020. The One Health European Joint Programme activities were based on the development and harmonization of a One Health science-based framework in the European Union (EU) and involved public health, animal health and food safety institutes from almost all EU Member States, the UK and Norway, thus strengthening the cooperation between public, medical and veterinary organizations in Europe. Activities including 24 joint research projects, 6 joint integrative projects and 17 PhD projects, and a multicountry simulation exercise facilitated harmonization of laboratory methods and surveillance, and improved tools for risk assessment. The provision of sustainable solutions is integral to a One Health approach. To ensure the legacy of the work of the One Health European Joint Programme, focus was on strategic communication and dissemination of the outputs and engagement of stakeholders at the national, European and international levels.


Assuntos
União Europeia , Saúde Única , Humanos , Animais , Saúde Pública , Europa (Continente) , Zoonoses/prevenção & controle , Comunicação , Inocuidade dos Alimentos
8.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992095

RESUMO

The bacterium Coxiella burnetii can cause the disease Q-fever in a wide range of animal hosts. Ruminants, including sheep, are thought to play a pivotal role in the transmission of C. burnetii to humans; however, the only existing livestock vaccine, namely, Coxevac® (Ceva Animal Health Ltd., Libourne, France), a killed bacterin vaccine based on phase I C. burnetii strain Nine-Mile, is only approved for use in goats and cattle. In this study, a pregnant ewe challenge model was used to determine the protective effects of Coxevac® and an experimental bacterin vaccine based on phase II C. burnetii against C. burnetii challenge. Prior to mating, ewes (n = 20 per group) were vaccinated subcutaneously with either Coxevac®, the phase II vaccine, or were unvaccinated. A subset of pregnant ewes (n = 6) from each group was then challenged 151 days later (~100 days of gestation) with 106 infectious mouse doses of C. burnetii, Nine-Mile strain RSA493. Both vaccines provided protection against C. burnetii challenge as measured by reductions in bacterial shedding in faeces, milk and vaginal mucus, and reduced abnormal pregnancies, compared to unvaccinated controls. This work highlights that the phase I vaccine Coxevac® can protect ewes against C. burnetii infection. Furthermore, the phase II vaccine provided comparable levels of protection and may offer a safer and cost-effective alternative to the currently licensed vaccine.

9.
Front Immunol ; 14: 1257722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954609

RESUMO

Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Animais , Ovinos , Bovinos , Coxiella burnetii/genética , Febre Q/prevenção & controle , Febre Q/veterinária , Formação de Anticorpos , Epitopos , Proteoma , Mapeamento de Epitopos , Vacinação/veterinária , Ruminantes , Cabras , Peptídeos , Vacinas Bacterianas
10.
J Clin Microbiol ; 50(6): 2156-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495560

RESUMO

Real-time PCR shows the widespread presence of Coxiella burnetii DNA in a broad range of commercially available milk and milk products. MLVA genotyping shows that this is the result of the presence of a predominant C. burnetii genotype in the dairy cattle population.


Assuntos
Coxiella burnetii/classificação , Coxiella burnetii/genética , Leite/microbiologia , Tipagem Molecular , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Bovinos , Análise por Conglomerados , Coxiella burnetii/isolamento & purificação , Genótipo
11.
J Clin Microbiol ; 50(3): 1076-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22189106

RESUMO

The genotypic diversity of Coxiella burnetii in clinical samples obtained from the Dutch Q fever outbreak episodes of 2007-2010 was determined by using a 6-locus variable-number tandem repeat analysis panel. The results are consistent with the introduction of one founder genotype that is gradually diversifying over time while spreading throughout The Netherlands.


Assuntos
Coxiella burnetii/classificação , Coxiella burnetii/genética , Surtos de Doenças , Variação Genética , Febre Q/epidemiologia , Febre Q/microbiologia , Coxiella burnetii/isolamento & purificação , Genótipo , Humanos , Repetições Minissatélites , Epidemiologia Molecular , Tipagem Molecular , Países Baixos/epidemiologia
12.
Appl Environ Microbiol ; 78(16): 5661-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685149

RESUMO

Beginning in 2007, the largest human Q fever outbreak ever described occurred in the Netherlands. Dairy goats from intensive farms were identified as the source, amplifying Coxiella burnetii during gestation and shedding large quantities during abortions. It has been postulated that wild rodents are reservoir hosts from which C. burnetii can be transmitted to domestic animals and humans. However, little is known about the infection dynamics of C. burnetii in wild rodents. The aim of this study was to investigate whether brown rats (Rattus norvegicus) can be experimentally infected with C. burnetii and whether transmission to a cage mates occurs. Fourteen male brown rats (wild type) were intratracheally or intranasally inoculated with a Dutch C. burnetii isolate obtained from a goat. At 3 days postinoculation, a contact rat was placed with each inoculated rat. The pairs were monitored using blood samples and rectal and throat swabs for 8 weeks, and after euthanasia the spleens were collected. Rats became infected by both inoculation routes, and detection of C. burnetii DNA in swabs suggests that excretion occurred. However, based on the negative spleens in PCR and the lack of seroconversion, none of the contact animals was considered infected; thus, no transmission was observed. The reproduction ratio R(0) was estimated to be 0 (95% confidence interval = 0 to 0.6), indicating that it is unlikely that rats act as reservoir host of C. burnetii through sustained transmission between male rats. Future research should focus on other transmission routes, such as vertical transmission or bacterial shedding during parturition.


Assuntos
Coxiella burnetii/patogenicidade , Transmissão de Doença Infecciosa/veterinária , Febre Q/veterinária , Doenças dos Roedores/patologia , Doenças dos Roedores/transmissão , Animais , Sangue/microbiologia , Coxiella burnetii/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Masculino , Faringe/microbiologia , Febre Q/transmissão , Ratos , Reto/microbiologia , Doenças dos Roedores/microbiologia , Baço/microbiologia
13.
Vet Microbiol ; 259: 109166, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217040

RESUMO

Chlamydia gallinacea is a recently discovered and widespread obligate intracellular bacterium in chickens. In chickens, infections appear to be asymptomatic, but can result in reduced weight gain in broilers. Molecular typing revealed C. gallinacea is genetically diverse which might lead to differences in pathogenic potential between strains. However, studies about the pathogenesis of different C. gallinacea strains are still limited. In this study, the pathogenesis of C. gallinacea strain NL_G47 was investigated in three consecutive animal experiments. The first experiment served as a pilot in which a maximum culturable dose was administered orally to 13 chickens. Excretion of chlamydial DNA in cloacal swabs was measured during 11 days post infection, but no clinical signs were observed. The second and third experiment were a repetition of the first experiment, but now chickens were sacrificed at consecutive time points to investigate tissue dissemination of C. gallinacea. Again excretion of chlamydial DNA in cloacal swabs was detected and no clinical signs were observed in line with the results of the first experiment. PCR and immunohistochemistry of tissue samples revealed C. gallinacea infected the epithelium of the jejunum, ileum and caecum. Furthermore, C. gallinacea could be detected in macrophages in the lamina propria and in follicular dendritic cells (FDCs) of the B cell follicles in the caecal tonsil. Results of serology showed a systemic antibody response from day seven or eight and onward in all three experiments. The experiments with strain NL_G47 confirmed observations from field studies that C. gallinacea infection does not result in acute clinical disease and mainly resides in the epithelium of the gut. Whether the presence of C. gallinacea results in chronic persistent infections with long term and less obvious health effects in line with observations on other infections caused by Chlamydiae, needs further investigation.


Assuntos
Galinhas/microbiologia , Infecções por Chlamydia/veterinária , Chlamydia/patogenicidade , Doenças das Aves Domésticas/microbiologia , Aves Domésticas/microbiologia , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Infecções por Chlamydia/microbiologia , Macrófagos/microbiologia , Doenças das Aves Domésticas/imunologia , Virulência
14.
Front Immunol ; 12: 701811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394097

RESUMO

For the zoonotic disease Q fever, serological analysis plays a dominant role in the diagnosis of Coxiella burnetii infection and in pre-screening for past exposure prior to vaccination. A number of studies suggest that assessment of C. burnetii-specific T-cell IFNγ responses may be a more sensitive tool to assess past exposure. In this study, we assessed the performance of a whole blood C. burnetii IFNγ release assay in comparison to serological detection in an area of high Q fever incidence in 2014, up to seven years after initial exposure during the Dutch Q fever outbreak 2007-2010. In a cohort of >1500 individuals from the Dutch outbreak village of Herpen, approximately 60% had mounted IFNγ responses to C. burnetii. This proportion was independent of the Coxiella strain used for stimulation and much higher than the proportion of individuals scored sero-positive using the serological gold standard immunofluorescence assay. Moreover, C. burnetii-specific IFNγ responses were found to be more durable than antibody responses in two sub-groups of individuals known to have sero-converted as of 2007 or previously reported to the municipality as notified Q fever cases. A novel ready-to-use version of the IFNγ release assay assessed in a subgroup of pre-exposed individuals in 2021 (10-14 years post exposure) proved again to be more sensitive than serology in detecting past exposure. These data demonstrate that C. burnetii-induced IFNγ release is indeed a more sensitive and durable marker of exposure to C. burnetii than are serological responses. In combination with a simplified assay version suitable for implementation in routine diagnostic settings, this makes the assessment of IFNγ responses a valuable tool for exposure screening to obtain epidemiological data, and to identify previously exposed individuals in pre-vaccination screens.


Assuntos
Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Biomarcadores/sangue , Coxiella burnetii/imunologia , Interferon gama/sangue , Interferon gama/imunologia , Animais , Estudos Transversais , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Febre Q/sangue , Febre Q/imunologia , Febre Q/microbiologia , Zoonoses/sangue , Zoonoses/imunologia , Zoonoses/microbiologia
15.
Sci Rep ; 11(1): 16516, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389764

RESUMO

Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/patogenicidade , Chlamydophila psittaci/patogenicidade , Doenças das Aves Domésticas/microbiologia , Psitacose/veterinária , Animais , Embrião de Galinha , Galinhas/microbiologia , Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydophila psittaci/genética , Estudos de Associação Genética , Filogenia , Psitacose/microbiologia , Virulência/genética
16.
Infect Ecol Epidemiol ; 10(1): 1794668, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33224447

RESUMO

In Europe, wild boar populations pose an increasing risk for livestock and humans due to the transmission of animal and zoonotic infectious diseases, such as African swine fever and brucellosis. Brucella suis is widespread among wild boar in many European countries. In The Netherlands the prevalence of B. suis among wild boar has not been investigated so far, despite the high number of pig farms and the growing wild boar population. The Netherlands has a Brucella-free status for the livestock species. The objective of this study is to investigate the presence and distribution of B. suis in wild boars in The Netherlands and to assess the value of the different laboratory tests available for testing wild boars. A total of 2057 sera and 180 tonsils of wild boar were collected between 2010 and 2015. The sera were tested for Brucella antibodies and the tonsils were tested for Brucella spp. B. suis biovar 2 was detected by MLVA/MLST and culture in wild boar from the province of Limburg, while seropositive wild boar were obtained from the provinces of Limburg, Noord Brabant and Gelderland suggesting the northwards spread of B. suis biovar 2. In this paper, we describe the first isolation of B. suis biovar 2 in wild boar in The Netherlands.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30805312

RESUMO

Sequence-based typing of Francisella tularensis has led to insights in the evolutionary developments of tularemia. In Europe, two major basal clades of F. tularensis subsp. holarctica exist, with a distinct geographical distribution. Basal clade B.6 is primarily found in Western Europe, while basal clade B.12 occurs predominantly in the central and eastern parts of Europe. There are indications that tularemia is geographically expanding and that strains from the two clades might differ in pathogenicity, with basal clade B.6 strains being potentially more virulent than basal clade B.12. This study provides information on genotypes detected in the Netherlands during 2011-2017. Data are presented for seven autochthonous human cases and for 29 European brown hares (Lepus europaeus) with laboratory confirmed tularemia. Associated disease patterns are described for 25 European brown hares which underwent post-mortem examination. The basal clades B.6 and B.12 are present both in humans and in European brown hares in the Netherlands, with a patchy geographical distribution. For both genotypes the main pathological findings in hares associated with tularemia were severe (sub)acute necrotizing hepatitis and splenitis as well as necrotizing lesions and hemorrhages in several other organs. Pneumonia was significantly more common in the B.6 than in the B.12 cases. In conclusion, the two major basal clades present in different parts in Europe are both present in the Netherlands. In hares found dead, both genotypes were associated with severe acute disease affecting multiple organs. Hepatitis and splenitis were common pathological findings in hares infected with either genotype, but pneumonia occurred significantly more frequently in hares infected with the B.6 genotype compared to hares infected with the B.12 genotype.


Assuntos
Francisella tularensis/classificação , Francisella tularensis/isolamento & purificação , Variação Genética , Lebres , Filogeografia , Tularemia/microbiologia , Tularemia/veterinária , Animais , Francisella tularensis/genética , Genótipo , Humanos , Tipagem Molecular , Países Baixos , Tularemia/patologia
18.
Sci Rep ; 9(1): 14338, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605019

RESUMO

Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically inflamed bite wounds on pectoral fins and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the finding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans.


Assuntos
Genética Forense , Neisseria/patogenicidade , Focas Verdadeiras/lesões , Ferimentos e Lesões/genética , Animais , Animais Selvagens/genética , Animais Selvagens/lesões , Animais Selvagens/microbiologia , Neisseria/genética , Focas Verdadeiras/genética , Focas Verdadeiras/microbiologia , Ferimentos e Lesões/microbiologia , Zoonoses/genética , Zoonoses/microbiologia
19.
Arch Public Health ; 76: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29321921

RESUMO

Since the Neolithic period, humans have domesticated herbivores to have food readily at hand. The cohabitation with animals brought various advantages that drastically changed the human lifestyle but simultaneously led to the emergence of new epidemics. The majority of human pathogens known so far are zoonotic diseases and the development of both agricultural practices and human activities have provided new dynamics for transmission. This article provides a general overview of some factors that influence the epidemic potential of a zoonotic disease, Q fever. As an example of a disease where the interaction between the environment, animal (domestic or wildlife) and human populations determines the likelihood of the epidemic potential, the management of infection due to the Q fever agent, Coxiella burnetii, provides an interesting model for the application of the holistic One Health approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA