Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 43(5): 1120-1124, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006581

RESUMO

Exogenous oxytocin administration in obese mice, rats, and monkeys was shown to induce sustained weight loss, mostly due to a decrease in fat mass, accompanied by an improvement of glucose metabolism. A pilot study in obese humans confirmed the weight-reducing effect of oxytocin. Knowledge about circulating oxytocin levels in human obesity might help indicating which obese subjects could potentially benefit from an oxytocin treatment. Conclusive results on this topic are missing. The aim of this study was to measure circulating oxytocin levels in lean (n = 37) and obese (n = 72) individuals across a wide range of body mass index (BMI) values (18.5-60 kg/m2) and to determine the impact of pronounced body weight loss following gastric bypass surgery in 12 morbidly obese patients. We observed that oxytocin levels were unchanged in overweight and in class I and II obese subjects and only morbidly obese patients (obesity class III, BMI > 40 kg/m2) exhibited significantly higher levels than lean individuals, with no modification 1 year after gastric bypass surgery, despite substantial body weight loss. In conclusion, morbidly obese subjects present elevated oxytocin levels which were unaltered following pronounced weight loss.


Assuntos
Derivação Gástrica/estatística & dados numéricos , Obesidade Mórbida/metabolismo , Ocitocina/metabolismo , Redução de Peso/fisiologia , Adiposidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Ocitocina/uso terapêutico , Projetos Piloto , Resultado do Tratamento
2.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587816

RESUMO

Whereas leptin administration only has a negligible effect on the treatment of obesity, it has been demonstrated that its action can be improved by co-administration of leptin and one of its sensitizers. Considering that oxytocin treatment decreases body weight in obese animals and humans, we investigated the effects of oxytocin and leptin cotreatment. First, lean and diet-induced obese (DIO) mice were treated with oxytocin for 2 weeks and we measured the acute leptin response. Second, DIO mice were treated for 2 weeks with saline, oxytocin (50 µg/day), leptin (20 or 40 µg/day) or oxytocin plus leptin. Oxytocin pre-treatment restored a normal acute leptin response, decreasing food intake and body weight gain. Chronic continuous administration of oxytocin or leptin at 40 µg/day decreased body weight in the presence (leptin) or in the absence (oxytocin) of cumulative differences in food intake. Saline or leptin treatment at 20 µg/day had no impact on body weight. Oxytocin and leptin cotreatments had no additional effects compared with single treatments. These results point to the fact that chronic oxytocin treatment improves the acute, but not the chronic leptin response, suggesting that this treatment could be used to improve the short-term satiety effect of leptin.


Assuntos
Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Leptina/farmacologia , Obesidade/etiologia , Ocitocina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
3.
FASEB J ; 30(2): 909-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527067

RESUMO

Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired ß3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of ß-adrenergic receptor signaling.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/fisiologia , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Feminino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Consumo de Oxigênio/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Receptores de Mineralocorticoides/genética , Termogênese/fisiologia
4.
Cell Physiol Biochem ; 38(3): 1218-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982498

RESUMO

BACKGROUND/AIMS: Fibroblast growth factor 21 (FGF21), a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21. METHODS: We investigated a potential regulation of FGF21 by leptin in vivo in Wistar rats and in vitro using human derived hepatocarcinoma HepG2 cells. This model was chosen as the liver is considered the main FGF21 expression site. RESULTS: We found that leptin injections increased plasma FGF21 levels in adult Wistar rats. This was confirmed in vitro, as leptin increased FGF21 expression in HepG2 cells. We also showed that the leptin effect on FGF21 expression was mediated by STAT3 activation in HepG2 cells. CONCLUSION: New findings regarding a leptin-STAT3-FGF21 axis were provided in this study, although investigating the exact mechanisms linking leptin and FGF21 are still needed. These results are of great interest in the context of identifying potential new clinical approaches to treat metabolic diseases associated with insulin resistance, such as obesity and type 2 diabetes.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo
5.
J Hepatol ; 62(2): 421-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25234947

RESUMO

BACKGROUND & AIMS: PTEN is a dual lipid/protein phosphatase, downregulated in steatotic livers with obesity or HCV infection. Liver-specific PTEN knockout (LPTEN KO) mice develop steatosis, inflammation/fibrosis and hepatocellular carcinoma with aging, but surprisingly also enhanced glucose tolerance. This study aimed at understanding the mechanisms by which hepatic PTEN deficiency improves glucose tolerance, while promoting fatty liver diseases. METHODS: Control and LPTEN KO mice underwent glucose/pyruvate tolerance tests and euglycemic-hyperinsulinemic clamps. Body fat distribution was assessed by EchoMRI, CT-scan and dissection analyses. Primary/cultured hepatocytes and insulin-sensitive tissues were analysed ex vivo. RESULTS: PTEN deficiency in hepatocytes led to steatosis through increased fatty acid (FA) uptake and de novo lipogenesis. Although LPTEN KO mice exhibited hepatic steatosis, they displayed increased skeletal muscle insulin sensitivity and glucose uptake, as assessed by euglycemic-hyperinsulinemic clamps. Surprisingly, white adipose tissue (WAT) depots were also drastically reduced. Analyses of key enzymes involved in lipid metabolism further indicated that FA synthesis/esterification was decreased in WAT. In addition, Ucp1 expression and multilocular lipid droplet structures were observed in this tissue, indicating the presence of beige adipocytes. Consistent with a liver to muscle/adipocyte crosstalk, the expression of liver-derived circulating factors, known to impact on muscle insulin sensitivity and WAT homeostasis (e.g. FGF21), was modulated in LPTEN KO mice. CONCLUSIONS: Although steatosis develops in LPTEN KO mice, PTEN deficiency in hepatocytes promotes a crosstalk between liver and muscle, as well as adipose tissue, resulting in enhanced insulin sensitivity, improved glucose tolerance and decreased adiposity.


Assuntos
Adiposidade/genética , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Resistência à Insulina , Lipogênese/genética , PTEN Fosfo-Hidrolase/genética , RNA/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Western Blotting , Células Cultivadas , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , Tomografia Computadorizada por Raios X
6.
Rev Med Suisse ; 11(456-457): 97-100, 2015 Jan 14.
Artigo em Francês | MEDLINE | ID: mdl-25799660

RESUMO

Oxytocin is a hormone known for a long time, mainly used in the field of gynecology. Apart from these well-defined effects, the role of oxytocin in controlling the stress response or behavior and the regulation of glucose/lipid metabolism seems to be very interesting, especially in obese patients. Several clinical studies are currently underway to assess the impact of oxytocin in the treatment of obesity. Taking these new data into consideration, the use of this hormone for weight loss in obese patients or as a complementary treatment in diabetic patients seems to be promising.


Assuntos
Metabolismo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Ocitocina/farmacologia , Ocitocina/uso terapêutico , Animais , Humanos
7.
Gastroenterology ; 144(3): 636-649.e6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23142626

RESUMO

BACKGROUND & AIMS: Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS: Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS: We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS: Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Região Hipotalâmica Lateral/fisiologia , Hormônios Hipotalâmicos/fisiologia , Fígado/metabolismo , Melaninas/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Hormônios Hipofisários/fisiologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Ingestão de Alimentos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Hormônios Hipotalâmicos/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Fígado/efeitos dos fármacos , Masculino , Melaninas/administração & dosagem , Camundongos , Hepatopatia Gordurosa não Alcoólica , Hormônios Hipofisários/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores do Hormônio Hipofisário/agonistas , Receptores do Hormônio Hipofisário/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Nervo Vago/fisiopatologia
8.
Mol Genet Metab ; 112(1): 64-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685552

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and ß2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7ß2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7ß2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7ß2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7ß2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central ß2nAChR deficiency.


Assuntos
Tecido Adiposo/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Índice Glicêmico , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores Nicotínicos/genética
9.
Am J Physiol Endocrinol Metab ; 300(6): E1146-57, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21406614

RESUMO

Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5-9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot.


Assuntos
Adipócitos Marrons/fisiologia , Tecido Adiposo Branco/fisiologia , Metabolismo dos Lipídeos/fisiologia , Obesidade/genética , Obesidade/metabolismo , Termogênese/fisiologia , Tecido Adiposo Branco/citologia , Animais , Glicemia/metabolismo , Western Blotting , Calorimetria Indireta , Dieta , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , RNA/genética , Ratos , Ratos Endogâmicos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Aumento de Peso/efeitos dos fármacos
10.
Nat Commun ; 12(1): 7031, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857752

RESUMO

Intestinal surface changes in size and function, but what propels these alterations and what are their metabolic consequences is unknown. Here we report that the food amount is a positive determinant of the gut surface area contributing to an increased absorptive function, reversible by reducing daily food. While several upregulated intestinal energetic pathways are dispensable, the intestinal PPARα is instead necessary for the genetic and environment overeating-induced increase of the gut absorptive capacity. In presence of dietary lipids, intestinal PPARα knock-out or its pharmacological antagonism suppress intestinal crypt expansion and shorten villi in mice and in human intestinal biopsies, diminishing the postprandial triglyceride transport and nutrient uptake. Intestinal PPARα ablation limits systemic lipid absorption and restricts lipid droplet expansion and PLIN2 levels, critical for droplet formation. This improves the lipid metabolism, and reduces body adiposity and liver steatosis, suggesting an alternative target for treating obesity.


Assuntos
Fígado Gorduroso/genética , Intestinos/metabolismo , PPAR alfa/genética , Perilipina-2/genética , Adiposidade/genética , Animais , Dieta/métodos , Ingestão de Alimentos/fisiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Humanos , Absorção Intestinal/fisiologia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/deficiência , PPAR alfa/metabolismo , Perilipina-2/metabolismo , Período Pós-Prandial , Transdução de Sinais , Triglicerídeos/metabolismo
11.
J Neurosci ; 29(18): 5916-25, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420258

RESUMO

We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo dos Lipídeos/fisiologia , Obesidade/fisiopatologia , Receptores de Glucagon/fisiologia , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/genética , Composição Corporal/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Obesidade/etiologia , Obesidade/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Adrenérgicos beta/deficiência , Receptores de Glucagon/antagonistas & inibidores , Transdução de Sinais/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Fatores de Tempo
12.
Pflugers Arch ; 459(3): 465-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19756714

RESUMO

The klotho gene may be involved in the aging process. Klotho is a coactivator of FGF23, a regulator of phosphate and vitamin D metabolism. It has also been reported to be downregulated in insulin resistance syndromes and paradoxically to directly inhibit IGF-1 and insulin signaling. Our aim was to study klotho's regulation and effects on insulin and IGF-1 signaling to unravel this paradox. We studied klotho tissue distribution and expression by quantitative real-time polymerase chain reaction and Western blotting in obese Zucker rats and high-fat fed Wistar rats, two models of insulin resistance. Klotho was expressed in kidneys but at much lower levels (<1.5%) in liver, muscle, brain, and adipose tissue. There were no significant differences between insulin resistant and control animals. We next produced human recombinant soluble klotho protein (KLEC) and studied its effects on insulin and IGF-1 signaling in cultured cells. In HEK293 cells, FGF23 signaling (judged by FRS2-alpha and ERK1/2 phosphorylation) was activated by conditioned media from KLEC-producing cells (CM-KLEC); however, IGF-1 signaling was unaffected. CM-KLEC did not inhibit IGF-1 and insulin signaling in L6 and Hep G2 cells, as judged by Akt and ERK1/2 phosphorylation. We conclude that decreased klotho expression is not a general feature of rodent models of insulin resistance. Further, the soluble klotho protein does not inhibit IGF-1 and/or insulin signaling in HEK293, L6, and HepG2 cells, arguing against a direct role of klotho in insulin signaling. However, the hypothesis that klotho indirectly regulates insulin sensitivity via FGF23 activation remains to be investigated.


Assuntos
Glucuronidase/metabolismo , Resistência à Insulina/fisiologia , Animais , Linhagem Celular , Gorduras na Dieta , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glucuronidase/genética , Humanos , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Klotho , Masculino , Camundongos , Pioglitazona , Ratos , Ratos Wistar , Ratos Zucker , Transdução de Sinais/fisiologia , Tiazolidinedionas/metabolismo , Distribuição Tecidual
13.
J Clin Invest ; 117(11): 3475-88, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17885689

RESUMO

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo dos Lipídeos , Melanocortinas/metabolismo , Transdução de Sinais/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Comportamento Animal/fisiologia , Ingestão de Alimentos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Hormônios Estimuladores de Melanócitos/metabolismo , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina , alfa-MSH/administração & dosagem , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo
14.
J Clin Invest ; 116(7): 1983-93, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16767221

RESUMO

Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.


Assuntos
Adipócitos/metabolismo , Encéfalo/metabolismo , Hormônios Peptídicos/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Encéfalo/anatomia & histologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Grelina , Glucose/metabolismo , Homeostase , Canais Iônicos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/genética , Ratos , Ratos Wistar , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3
15.
Gastroenterology ; 134(1): 268-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18166358

RESUMO

BACKGROUND & AIMS: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor and a regulator of insulin sensitivity in peripheral tissues. In the liver, PTEN deletion increases insulin sensitivity, but induces steatosis, steatohepatitis, and hepatocellular carcinoma. Here, we investigated the pathophysiologic mechanisms regulating PTEN expression in the liver and the development of steatosis. METHODS: PTEN expression was evaluated in the liver of rats and human beings having metabolic syndrome. Signaling pathways regulating PTEN expression and lipid accumulation in hepatocytes were examined in vitro. RESULTS: PTEN expression is down-regulated in the liver of rats having steatosis and high plasma levels of fatty acids, as well as in steatotic human livers. Unsaturated fatty acids inhibited PTEN expression in HepG2 cells via activation of a signaling complex formed by the mammalian target of rapamycin (mTOR) and nuclear factor-kappaB (NF-kappaB). Down-regulation of PTEN expression induced steatosis by affecting import, esterification, and extracellular release of fatty acids. CONCLUSIONS: Hepatic steatosis can be mediated by alterations of PTEN expression in hepatocytes exposed to high levels of unsaturated fatty acids. Furthermore, our data revealed interaction between mTOR and NF-kappaB, suggesting cross-talk between these 2 pathways.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Fígado Gorduroso/etiologia , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Síndrome Metabólica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Hepatócitos/fisiologia , Humanos , Proteínas Quinases/fisiologia , Ratos , Ratos Wistar , Ratos Zucker , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Fator de Transcrição RelA/fisiologia
16.
J Am Soc Nephrol ; 19(1): 92-101, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18032797

RESUMO

11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Desidroepiandrosterona/farmacologia , Túbulos Renais Coletores/enzimologia , RNA Mensageiro/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Córtex Renal/efeitos dos fármacos , Córtex Renal/enzimologia , Túbulos Renais Coletores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
17.
Regul Pept ; 149(1-3): 26-31, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18453013

RESUMO

The white adipose tissue was initially largely known only as an energy storage tissue. It is now well recognized that white adipose tissue is a major endocrine and secretory organ, which releases a wide range of protein signals and factors termed adipokines. The regulation of adipocyte metabolism is an important factor for the understanding of obesity, and some mechanisms are still unknown. Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the central nervous system. There is substantial evidence demonstrating that the central nervous system also directly regulates adipocyte metabolism. In this review, we discuss the central actions of some peptides with an important role in energy balance regulation on adipocyte metabolism and the physiological relevance of these actions.


Assuntos
Adipócitos/fisiologia , Sistema Nervoso Central/metabolismo , Animais , Humanos , Modelos Biológicos
18.
Metabolism ; 87: 13-17, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936173

RESUMO

BACKGROUND: Oleoylethanolamide (OEA) is an endocannabinoid that controls food intake, energy expenditure and locomotor activity. Its anorexigenic effect appears to be mediated by PPARα, but the tissue where the presence of this receptor is required for OEA to inhibit feeding is unknown as yet. Previous studies point to a possible role of proximal enterocytes and neurons of the nodose ganglion. MATERIALS AND METHODS: Acute intraperitoneal OEA effects on food intake, energy expenditure, respiratory exchange ratio (RER) and locomotor activity were studied in control mice (PPARα-loxP) and intestinal (Villin-Cre;PPARα-loxP) or nodose ganglion (Phox2B-Cre;PPARα-loxP) specific PPARα knockout mice placed in calorimetric cages. RESULTS: OEA administration to both intestinal and nodose ganglion PPARα knockout mice decreased food intake, RER (leading to increased lipid oxidation) and locomotor activity as in control mice. However, while OEA injection acutely decreased energy expenditure in controls, this effect was not observed in mice devoid of PPARα in the intestine. CONCLUSION: These results indicate that the OEA effect on food intake is independent from the presence of PPARα in the intestine and the nodose ganglion, while the impact of OEA on energy expenditure requires the presence of PPARα in the intestine.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Ácidos Oleicos/farmacologia , PPAR alfa/metabolismo , Animais , Mucosa Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , PPAR alfa/efeitos dos fármacos , PPAR alfa/genética
19.
Environ Health Perspect ; 115(10): 1467-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17938737

RESUMO

BACKGROUND: Obesity is an increasingly prevalent health problem, and natural effective therapeutic approaches are required to prevent its occurrence. Phytoestrogens are plant-derived compounds with estrogenic activities; they can bind to both estrogen receptors alpha and beta and mimic the action of estrogens on target organs. OBJECTIVES: The purpose of this study was to examine the influence of soy-derived phytoestrogens on energy balance and metabolism. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet from conception to adulthood. We measured circulating serum isoflavone levels using reverse-phase solid-phase extraction for subsequent liquid chromatography electrospray tandem mass spectrometry analysis. Adult animals were analyzed for body composition by dual-energy X-ray absorptiometry, locomotor activity by running-wheel experiments, respiratory exchange rate by indirect calorimetry, and food intake using metabolic cages. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine the expression of hypothalamic neuropeptide genes. RESULTS: We found that adult mice fed a soy-rich diet had reduced body weight, adiposity, and resistance to cold. This lean phenotype was associated with an increase in lipid oxidation due to a preferential use of lipids as fuel source and an increase in locomotor activity. The modulation of energy balance was associated with a central effect of phytoestrogens on the expression of hypothalamic neuropeptides, including agouti-related protein. CONCLUSION: The data suggest that dietary soy could have beneficial effects on obesity, but they also emphasize the importance of monitoring the phytoestrogen content of diets as a parameter of variability in animal experiments.


Assuntos
Adiposidade/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glycine max/química , Isoflavonas/sangue , Fitoestrógenos/farmacologia , Proteína Relacionada com Agouti/efeitos dos fármacos , Ração Animal , Animais , Estudos de Casos e Controles , Temperatura Baixa , Isoflavonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Obesidade , Fitoestrógenos/metabolismo
20.
Cell Metab ; 26(3): 475-492.e7, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877454

RESUMO

Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3+ regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown. Here, we report that enhancing sympathetic tone by cold exposure, beta3-adrenergic receptor (ADRB3) stimulation or a short-term high-calorie diet enhances Treg induction in vitro and in vivo. CD4+ T cell proteomes revealed higher expression of Foxp3 regulatory networks in response to cold or ADRB3 stimulation in vivo reflecting Treg induction. Specifically, Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated in CD4+ T cells by either ADRB3 stimulation or cold exposure, suggesting contribution to Treg induction. By loss- and gain-of-function studies, including Treg depletion and transfers in vivo, we demonstrated that a T cell-specific Stat6/Pten axis links cold exposure or ADRB3 stimulation with Foxp3+ Treg induction and adipose tissue function. Our findings offer a new mechanistic model in which tissue-specific Tregs maintain adipose tissue function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Temperatura Baixa , Feminino , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos BALB C , Proteoma/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA