Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(7): 1624-38, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360282

RESUMO

Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/ß-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/ß-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible.


Assuntos
Envelhecimento/patologia , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108131

RESUMO

Alzheimer's disease (AD), which predominantly affects women, involves at its onset a metabolic deregulation associated with a synaptic failure. Here, we performed a behavioral, neurophysiological and neurochemical characterization of 9-month-old female APPswe/PS1dE9 (APP/PS1) mice as a model of early AD. These animals showed learning and memory deficits in the Morris water maze, increased thigmotaxis and anxiety-like behavior and showed signs of fear generalization. Long-term potentiation (LTP) was decreased in the prefrontal cortex (PFC), but not in the CA1 hippocampus or amygdala. This was associated with a decreased density of sirtuin-1 in cerebrocortical synaptosomes and a decreased density of sirtuin-1 and sestrin-2 in total cerebrocortical extracts, without alterations of sirtuin-3 levels or of synaptic markers (syntaxin, synaptophysin, SNAP25, PSD95). However, activation of sirtuin-1 did not affect or recover PFC-LTP deficit in APP/PS1 female mice; instead, inhibition of sirtuin-1 increased PFC-LTP magnitude. It is concluded that mood and memory dysfunction in 9-month-old female APP/PS1 mice is associated with a parallel decrease in synaptic plasticity and in synaptic sirtuin-1 levels in the prefrontal cortex, although sirtiun1 activation failed to restore abnormal cortical plasticity.


Assuntos
Doença de Alzheimer , Córtex Pré-Frontal , Sirtuína 1 , Animais , Feminino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163080

RESUMO

Pharmacological conditioning is a protective strategy against ischemia/reperfusion injury, which occurs during liver resection and transplantation. Polyethylene glycols have shown multiple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in decreased hepatic injury and protected the mitochondria in a rat model of cold ischemia. Thus, the study aimed to decipher the mechanisms underlying PEG35 preconditioning-induced protection against ischemia/reperfusion injury. A hypoxia/reoxygenation model using HepG2 cells was established to evaluate the effects of PEG35 preconditioning. Several parameters were assessed, including cell viability, mitochondrial membrane potential, ROS production, ATP levels, protein content and gene expression to investigate autophagy, mitochondrial biogenesis and dynamics. PEG35 preconditioning preserved the mitochondrial function by decreasing the excessive production of ROS and subsequent ATP depletion, as well as by recovering the membrane potential. Furthermore, PEG35 increased levels of autophagy-related proteins and the expression of genes involved in mitochondrial biogenesis and fusion. In conclusion, PEG35 preconditioning effectively ameliorates hepatic hypoxia/reoxygenation injury through the enhancement of autophagy and mitochondrial quality control. Therefore, PEG35 could be useful as a potential pharmacological tool for attenuating hepatic ischemia/reperfusion injury in clinical practice.


Assuntos
Hipóxia/fisiopatologia , Precondicionamento Isquêmico/métodos , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Autofagia , Humanos , Fígado/patologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
4.
Nanotechnology ; 32(14): 145703, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333498

RESUMO

This study reports on the synthesis of highly oriented chromium triiodide (CrI3) magnetic inclusions inside nano/microfibres with a polyethylene oxide matrix, prepared by the electrospinning technique. The structural, microstructural and spectroscopic analysis shows uniformly dispersed CrI3 nanosized inclusions inside the fibres, presenting a C2/m monoclinic structure at room temperature, where their c-axis is perpendicular to the fibre mat plane and the ab layers are in-plane. Analysis of the magnetic properties show that the samples have a ferromagnetic-paramagnetic phase transition at ∼55-56 K, lower than that of bulk CrI3. Noticeably, a field-driven metamagnetic transition is observed below ∼45 K, from M versus H curves, when the applied magnetic field is perpendicular to the fibre mat plane, while it is strongly reduced when the field is in-plane. This anisotropic behaviour is attributed to the field-induced changes from antiferromagnetic to ferromagnetic interlayer magnetic moment alignment along the CrI3 c-axis stacked layers. These CrI3 electrospun fibres then show an efficient cost-effective route to synthesize magnetic composite fibres with highly oriented van der Walls inclusions, for spintronic applications, taking advantage of their anisotropic 2D layered materials properties.

5.
Cell Mol Life Sci ; 77(10): 1947-1958, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31748917

RESUMO

Metabolic diseases, such as type 2 diabetes or obesity, are the consequence of the disruption of the organism's metabolic pathways. The discovery of small non-coding RNAs-microRNAs (miRNAs)-as post-transcriptional gene regulators opened new doors for the development of novel strategies to combat said diseases. The two strands of miR-378a, miR-378a-3p, and miR-378a-5p are encoded in the Ppargc1b gene and have an active role in the regulation of several metabolic pathways such as mitochondrial metabolism and autophagy. Recent studies recognized miR-378a as an important regulator of energy and glucose homeostasis, highlighting it as a potential target for the improvement of metabolic dysregulation. In the present review, the current knowledge on miR-378a will be discussed with a particular emphasis on its biological functions and mechanisms of action in metabolism, mitochondria, and autophagy.


Assuntos
Doenças Metabólicas/genética , Redes e Vias Metabólicas/genética , MicroRNAs/genética , Mitocôndrias/genética , Autofagia/genética , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Doenças Metabólicas/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430391

RESUMO

Metformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant for better understanding metformin's mechanisms underlying its biological effects. In the current work, we found that metformin increases miR-378a-3p expression (p < 0.002) in C2C12 myoblasts previously exposed to hyperglycemic conditions. While the inhibition of miR-378a-3p was shown to impair metformin's effect in ATP production, PEPCK activity and the expression of Tfam. Finally, mitophagy, an autophagic process responsible for the selective degradation of mitochondria, was found to be induced by miR-378a-3p (p < 0.04). miR-378a-3p stimulated mitophagy through a process independent of sestrin-2 (SESN2), a stress-responsible protein that has been recently demonstrated to positively modulate mitophagy. Our findings provide novel insights into an alternative mechanism of action of metformin involving miR-378a-3, which can be used in the future for the development of improved therapeutic strategies against metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Metformina/farmacologia , MicroRNAs/genética , Proteínas Nucleares/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Camundongos
7.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769169

RESUMO

Bile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models. Thus, the aim of this study was to understand if this obesity reduction is indeed thermogenically-dependent. A CRISPR/Cas9 model of TGR5 (BA receptor) knockdown in 3T3-L1 adipocytes was developed to diminish thermogenic effects. Various parameters were assessed, including mitochondrial bioenergetics by Seahorse flux analysis, oxidative stress and membrane potential by fluorometry, intermediary metabolism by NMR, protein content assessment by Western Blot, gene expression by qPCR, and confocal microscopy evaluation of mitophagy. CDCA was still capable, for the most part, of reversing the harmful effects of cellular obesity, elevating mitophagy and leading to the reduction of harmed mitochondria within the cells, boosting mitochondrial activity, and thus energy consumption. In summary, CDCA has a non-thermogenic, obesity reducing capacity that hinges on a healthy mitochondrial population, explaining at least some of these effects and opening avenues of human treatment for metabolic diseases.


Assuntos
Fármacos Antiobesidade/farmacologia , Sistemas CRISPR-Cas , Ácido Quenodesoxicólico/farmacologia , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Receptores Acoplados a Proteínas G/deficiência , Células 3T3-L1 , Animais , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/genética , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética
8.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664470

RESUMO

Hepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction. Hence, strategies that prime mitochondria towards damage resilience might prove applicable in a clinical setting. A promising approach has been to induce a mitohormetic response, removing less capable organelles, and replacing them with more competent ones, in preparation for an insult. Recently, a soluble form of adenylyl cyclase (sAC) has been shown to exist within mitochondria, the activation of which improved mitochondrial function. Here, we sought to understand if inhibiting mitochondrial sAC would elicit mitohormesis and protect the liver from I/R injury. Wistar male rats were pretreated with LRE1, a specific sAC inhibitor, prior to the induction of hepatic I/R injury, after which mitochondria were collected and their metabolic function was assessed. We find LRE1 to be an effective inducer of a mitohormetic response based on all parameters tested, a phenomenon that appears to require the activity of the NAD+-dependent sirtuin deacylase (SirT3) and the subsequent deacetylation of mitochondrial proteins. We conclude that LRE1 pretreatment leads to a mitohormetic response that protects mitochondrial function during I/R injury.


Assuntos
Inibidores de Adenilil Ciclases/uso terapêutico , Falência Hepática/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Pirimidinas/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Tiofenos/uso terapêutico , Difosfato de Adenosina/metabolismo , Inibidores de Adenilil Ciclases/administração & dosagem , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/fisiologia , Animais , Constrição , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Artéria Hepática , Hormese/efeitos dos fármacos , Falência Hepática/enzimologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Consumo de Oxigênio , Fosforilação , Veia Porta , Pré-Medicação , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/enzimologia , Solubilidade , Tiofenos/administração & dosagem , Tiofenos/farmacologia
9.
Toxicol Mech Methods ; 30(7): 536-545, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32544017

RESUMO

Coffee is the most popular hot beverage and caffeine is the most used psychoactive drug in the world. Roasting of coffee beans leads to the generation of minute quantities of undesirable compounds, such as furan. It is now thought that the toxicity of furan derives from its processing by CYP450 family of detoxifying enzymes, leading to the formation of cis-2-butene-1,4-dial (BDA). BDA has known cytotoxicity capacities, binding to proteins, nucleic acids, and glutathione (GSH). BDA also appears to mediate furan's toxic effects, since the inhibition of CYP450 family impedes the aforementioned toxicological effects of furan. There are some studies performed on furan's toxicity, but very few on BDA. Furthermore, the doses used in these studies appear to be fairly high when compared with the expected dosage one could be exposed to in a standard day. As such, to understand if furan and BDA could have toxic effects using more realistic doses and longer time frames, human and rat hepatocytes were exposed to furan or BDA for up to 96 h, and several biochemical parameters were assessed. We report here that human hepatocytes were more sensitive than rat's, in particular to furan, for we show a decrease in MTT reduction, ATP levels and increase in carbonyl formation and 8-OHdG accumulation in the longer time points. BDA was mostly ineffective, which we attribute to a low import rate into the cells. In conclusion, we show that there is potential for harm from furan in high doses, which should be carefully addressed.


Assuntos
Aldeídos/toxicidade , Café/toxicidade , Furanos/toxicidade , Hepatócitos/efeitos dos fármacos , Sementes/toxicidade , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Culinária , Dano ao DNA , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Temperatura Alta , Humanos , Estresse Oxidativo/efeitos dos fármacos , Carbamilação de Proteínas/efeitos dos fármacos , Ratos , Especificidade da Espécie , Fatores de Tempo
10.
Int J Med Sci ; 16(9): 1304-1312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588197

RESUMO

The organ preservation paradigm has changed following the development of new ways to preserve organs. The use of machine perfusion to preserve organs appears to have several advantages compared with conventional static cold storage. For liver transplants, the temperature control provided by machine perfusion improves organ preservation. In this experimental study, we measured the effects of different temperatures on mitochondrial bioenergetics during the reperfusion phase. An experimental model of ex-vivo liver transplantation was developed in Wistar rats (Rattus norvegicus). After total hepatectomy, cold static preservation occurred at 4ºC and reperfusion was performed at 37ºC and 32ºC using a Langendorff system. We measured parameters associated with mitochondrial bioenergetics in the livers. Compared with the livers that underwent normothermic reperfusion, mild hypothermia during reperfusion caused significant increases in the mitochondrial membrane potential, the adenosine triphosphate content, and mitochondrial respiration, and a significant reduction in the lag phase (all P < 0.001). Mild hypothermia during reperfusion reduced the effect of ischemia-reperfusion injury on mitochondrial activity in liver tissue and promoted an increase in bioenergetic availability compared with normothermic reperfusion.


Assuntos
Hipotermia Induzida/métodos , Transplante de Fígado/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Fígado/citologia , Fígado/fisiologia , Masculino , Potencial da Membrana Mitocondrial , Ratos Wistar , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Temperatura
11.
Eur J Clin Invest ; 48(6): e12932, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29603199

RESUMO

BACKGROUND: Fatty livers are considerably more susceptible to acute stressors, such as ischaemia/reperfusion (I/R). As the incidence of I/R is high due to surgical events and some pathologies, there is an urgent need to find strategies against I/R injury (I/RI) in fatty livers. We postulate that an acute pretreatment with indirubin-3'-oxime (Ind) or NAD+ prevents mitochondrial dysfunction associated with warm I/RI in fatty livers. MATERIALS AND METHODS: Zucker fatty rats were subjected to warm ischaemia and 12 hours of reperfusion. Ind or NAD+ was administered in the hepatic artery 30 minutes before ischaemia. Hepatic mitochondrial isolation was performed, and functional assays as well as molecular analysis were performed. RESULTS: Pretreatment decreased markers of liver injury while preserving mitochondrial cytochrome c content, which is related to the prevention of calcium-induced mitochondrial permeability transition (mPT), the decline in mitochondrial respiratory state 3 and ATP content. The generation of reactive oxygen species (ROS) was also diminished. Inhibition of GSK-3ß by Ind resulted in the prevention of cyclophilin-D (CypD) phosphorylation, unabling it to bind to the adenine nucleotide translocator (ANT), thus, preventing mPT induction. Furthermore, deacetylation of CypD at Lys residue by sirtuin 3 (SIRT3) caused its dissociation from ANT, contributing to an increase in mPT threshold in NAD+ -pretreated animals. CONCLUSIONS: Pretreatment with Ind or NAD+ protects fatty livers by maintaining mitochondrial calcium homoeostasis, thus, preserving mitochondrial function and energetic balance. As such, CypD might be a new protective target against I/RI in fatty livers.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Fígado Gorduroso/metabolismo , Indóis/farmacologia , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , NAD/farmacologia , Oximas/farmacologia , Traumatismo por Reperfusão/metabolismo , Isquemia Quente , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/efeitos dos fármacos , Ciclofilinas/metabolismo , Citocromos c/efeitos dos fármacos , Citocromos c/metabolismo , Fígado Gorduroso/patologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Artéria Hepática , Fígado/metabolismo , Fígado/patologia , Mitocôndrias Hepáticas/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo
12.
Int J Med Sci ; 15(3): 248-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483816

RESUMO

Ischemia/reperfusion (I/R) injury in liver transplantation can disrupt the normal activity of mitochondria in the hepatic parenchyma. This potential dysfunction of mitochondria after I/R injury could be responsible for the initial poor graft function or primary nonfunction observed after liver transplantation. Thus, determining the mechanisms that lead to human hepatic mitochondrial dysfunction might contribute to improving the outcome of liver transplantation. Furthermore, early identification of novel prognostic factors involved in I/R injury could serve as a key endpoint to predict the outcome of liver grafts and also to promote the early adoption of novel strategies that protect against I/R injury. Here, we briefly review recent advances in the study of mitochondrial dysfunction and I/R injury, particularly in relation to liver transplantation. Next, we highlight various pharmacological therapeutic strategies that could be applied, and discuss their relationship to relevant mitochondrion-related processes and targets. Lastly, we note that although considerable progress has been made in our understanding of I/R injury and mitochondrial dysfunction, further investigation is required to elucidate the cellular and molecular mechanisms underlying these processes, thereby identifying biomarkers that can help in evaluating donor organs.


Assuntos
Transplante de Fígado/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Traumatismo por Reperfusão/patologia
13.
Int J Mol Sci ; 19(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351246

RESUMO

Liver transplantation is a therapeutic regimen to treat patients with non-malignant end-stage liver diseases and malignant tumors of hepatic origin. The ischemia/reperfusion (I/R) injury in liver transplantation is associated with disruption of mitochondrial function in the hepatic parenchyma. Several studies have been conducted in animal models to identify pharmacological therapeutic strategies to minimize the injury induced by the cold/warm I/R in liver transplantation. Most of these studies were conducted in unrealistic conditions without the potential to be translated to clinical usage. Berberine (BBR) is a pharmacological compound with a potential protective effect of the mitochondrial function in the context of I/R. For the future clinical application of these pharmacological strategies, it is essential that a close resemblance exists between the methodology used in the animals models and real life. In this study, we have demonstrated that the addition of BBR to the preservation solution in an I/R setting preserves mitochondrial function and bioenergetics, protecting the liver from the deleterious effects caused by I/R. As such, BBR has the potential to be used as a pharmacological therapeutic strategy.


Assuntos
Berberina/administração & dosagem , Transplante de Fígado/efeitos adversos , Mitocôndrias/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Isquemia Fria/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Preservação de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Traumatismo por Reperfusão/fisiopatologia , Isquemia Quente/efeitos adversos
14.
Int J Mol Sci ; 19(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131474

RESUMO

Institut George Lopez-1 (IGL-1) and Histidine-tryptophan-ketoglutarate (HTK) solutions are proposed as alternatives to UW (gold standard) in liver preservation. Their composition differs in terms of the presence/absence of oncotic agents such as HES or PEG, and is decisive for graft conservation before transplantation. This is especially so when fatty (steatotic) livers are used since these grafts are more vulnerable to ischemia insult during conservation. Their composition determines the extent of the subsequent reperfusion injury after transplantation. Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, has been reported to play a protective role in warm ischemia-reperfusion injury (IRI), but its potential in fatty liver cold ischemic injury has not yet been investigated. We evaluated the relevance of ALDH2 activity in cold ischemia injury when fatty liver grafts from Zucker Obese rats were preserved in UW, HTK, and IGL-1 solutions, in order to study the mechanisms involved. ALDH2 upregulation was highest in livers preserved in IGL-1. It was accompanied by a decrease in transaminases, apoptosis (Caspase 3 and TUNEL assay), and lipoperoxidation, which was concomitant with the effective clearance of toxic aldehydes such as 4-hydroxy-nonenal. Variations in ATP levels were also determined. The results were consistent with levels of NF-E2 p45-related factor 2 (Nrf2), an antioxidant factor. Here we report for the first time the relevance of mitochondrial ALDH2 in fatty liver cold preservation and suggest that ALDH2 could be considered a potential therapeutic target or regulator in clinical transplantation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Isquemia Fria , Fígado Gorduroso/metabolismo , Animais , Apoptose , Biomarcadores , Criopreservação , Fígado Gorduroso/patologia , Transplante de Fígado , Mitocôndrias/metabolismo , Preservação de Órgãos , Soluções para Preservação de Órgãos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Fatores de Tempo
15.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364854

RESUMO

Institute Goeorges Lopez 1 (IGL-1) and Histidine-Tryptophan-Ketoglutarate (HTK) preservation solutions are regularly used in clinical for liver transplantation besides University of Wisconsin (UW) solution and Celsior. Several clinical trials and experimental works have been carried out comparing all the solutions, however the comparative IGL-1 and HTK appraisals are poor; especially when they deal with the underlying protection mechanisms of the fatty liver graft during cold storage. Fatty livers from male obese Zücker rats were conserved for 24 h at 4 °C in IGL-1 or HTK preservation solutions. After organ recovery and rinsing of fatty liver grafts with Ringer Lactate solution, we measured the changes in mechanistic target of rapamycin (mTOR) signaling activation, liver autophagy markers (Beclin-1, Beclin-2, LC3B and ATG7) and apoptotic markers (caspase 3, caspase 9 and TUNEL). These determinations were correlated with the prevention of liver injury (aspartate and alanine aminostransferase (AST/ALT), histology) and mitochondrial damage (glutamate dehydrogenase (GLDH) and confocal microscopy findings). Liver grafts preserved in IGL-1 solution showed a marked reduction on p-TOR/mTOR ratio when compared to HTK. This was concomitant with significant increased cyto-protective autophagy and prevention of liver apoptosis, including inflammatory cytokines such as HMGB1. Together, our results revealed that IGL-1 preservation solution better protected fatty liver grafts against cold ischemia damage than HTK solution. IGL-1 protection was associated with a reduced liver damage, higher induced autophagy and decreased apoptosis. All these effects would contribute to limit the subsequent extension of reperfusion injury after graft revascularization in liver transplantation procedures.


Assuntos
Isquemia Fria , Citoproteção , Fígado Gorduroso/metabolismo , Preservação de Órgãos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores , Isquemia Fria/efeitos adversos , Isquemia Fria/métodos , Criopreservação , Fígado Gorduroso/patologia , Expressão Gênica , Glucose , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Histocitoquímica , Testes de Função Hepática , Transplante de Fígado/métodos , Masculino , Manitol , Microscopia Confocal , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Preservação de Órgãos/métodos , Soluções para Preservação de Órgãos , Fosforilação , Cloreto de Potássio , Procaína , Ratos , Serina-Treonina Quinases TOR/metabolismo
16.
Purinergic Signal ; 13(2): 179-190, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27848069

RESUMO

Although adenosine A1 receptors (A1R) have been associated to ischemic preconditioning (IPC), direct evidence for their ability to preserve mitochondrial function upon hepatic preconditioning is still missing and could represent a novel strategy to boost the quality of liver transplants. We tested if the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prevented IPC in the liver and if the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) might afford a pharmacological preconditioning. Livers underwent a 120 min of 70% warm ischemia and 16 h of reperfusion (I/R), and the IPC group underwent a 5-min ischemic episode followed by a 10-min period of reperfusion before I/R. DPCPX or CCPA was administered intraperitoneally 2 h before IPC or I/R. The control of mitochondrial function emerged as the central element affected by IPC and controlled by endogenous A1R activation. Thus, livers from IPC- or CCPA-treated rats displayed an improved oxidative phosphorylation with higher state 3 respiratory rate, higher respiratory control ratio, increased ATP content, and decreased lag phase. IPC and CCPA also prevented the I/R-induced susceptibility to calcium-induced mitochondrial permeability transition, the rate of reactive oxygen species (ROS) generation, and the decreased mitochondrial content of phospho-Ser9 GSK-3ß. DPCPX abrogated these effects of IPC. These implicate the control of GSK-3ß activity by Akt-mediated Ser9-GSK-3ß phosphorylation preserving the efficiency of oxidative phosphorylation and ROS-mediated cell death in the ability of A1R activation to mimic IPC in the liver. In conclusion, the parallel between IPC and A1R-mediated preconditioning also paves the way to consider a putative therapeutic use of the later in liver transplants.


Assuntos
Precondicionamento Isquêmico/métodos , Fígado/metabolismo , Mitocôndrias/metabolismo , Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Int J Mol Sci ; 18(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282906

RESUMO

We investigated the involvement of glycogen synthase kinase-3ß (GSK3ß) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3ß and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3ß. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3ß and VDAC, contributing to ER stress reduction and cell death prevention.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Glicogênio Sintase Quinase 3 beta/metabolismo , Transplante de Fígado , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Função Hepática , Transplante de Fígado/efeitos adversos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trimetazidina/farmacologia , Vasodilatadores/farmacologia
18.
HPB (Oxford) ; 19(12): 1091-1103, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28941575

RESUMO

BACKGROUND: The Associating Liver Partition and Portal Ligation for Staged Hepatectomy (ALPPS) depends on a significant inter-stages kinetic growth rate (KGR). Liver regeneration is highly energy-dependent. The metabolic adaptations in ALPPS are unknown. AIMS: i) Assess bioenergetics in both stages of ALPPS (T1 and T2) and compare them with control patients undergoing minor (miHp) and major hepatectomy (MaHp), respectively; ii) Correlate findings in ALPPS with volumetric data; iii) Investigate expression of genes involved in liver regeneration and energy metabolism. METHODS: Five patients undergoing ALPPS, five controls undergoing miHp and five undergoing MaHp. Assessment of remnant liver bioenergetics in T1, T2 and controls. Analysis of gene expression and protein content in ALPPS. RESULTS: Mitochondrial function was worsened in T1 versus miHp; and in T2 versus MaHp (p < 0.05); but improved from T1 to T2 (p < 0.05). Liver bioenergetics in T1 strongly correlated with KGR (p < 0.01). An increased expression of genes associated with liver regeneration (STAT3, ALR) and energy metabolism (PGC-1α, COX, Nampt) was found in T2 (p < 0.05). CONCLUSION: Metabolic capacity in ALPPS is worse than in controls, improves between stages and correlates with volumetric growth. Bioenergetic adaptations in ALPPS could serve as surrogate markers of liver reserve and as target for energetic conditioning.


Assuntos
Metabolismo Energético , Hepatectomia/métodos , Regeneração Hepática , Fígado/cirurgia , Mitocôndrias Hepáticas/metabolismo , Veia Porta/cirurgia , Idoso , Estudos de Casos e Controles , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Redutases do Citocromo/genética , Redutases do Citocromo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Hepatectomia/efeitos adversos , Humanos , Ligadura , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/genética , Masculino , Pessoa de Meia-Idade , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Resultado do Tratamento
19.
NMR Biomed ; 29(10): 1391-402, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488269

RESUMO

Obesity is a worldwide epidemic, and associated pathologies, including type 2 diabetes and cardiovascular alterations, are increasingly escalating morbidity and mortality. Despite intensive study, no effective simple treatment for these conditions exists. As such, the need for go-to drugs is serious. Bile acids (BAs) present the possibility of reversing these problems, as various in vivo studies and clinical trials have shown significant effects with regard to weight and obesity reduction, insulin sensitivity restoration and cardiovascular improvements. However, the mechanism of action of BA-induced metabolic improvement has yet to be fully established. The currently most accepted model involves non-shivering thermogenesis for energy waste, but this is disputed. As such, we propose to determine whether the BA chenodeoxycholic acid (CDCA) can exert anti-obesogenic effects in vitro, independent of thermogenic brown adipose tissue activation. By exposing differentiated 3 T3-L1 adipocytes to high glucose and CDCA, we demonstrate that this BA has anti-obesity effects in vitro. Nuclear magnetic resonance spectroscopic analysis of metabolic pathways clearly indicates an improvement in metabolic status, as these cells become more oxidative rather than glycolytic, which may be associated with an increase in fatty acid oxidation. Our work demonstrates that CDCA-induced metabolic alterations occur in white and brown adipocytes and are not totally dependent on endocrine/nervous system signaling, as thought until now. Furthermore, future exploration of the mechanisms behind these effects will undoubtedly reveal interesting targets for clinical modulation.


Assuntos
Tecido Adiposo Branco/fisiologia , Ácido Quenodesoxicólico/administração & dosagem , Glucose/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Obesidade/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/administração & dosagem , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Obesidade/prevenção & controle
20.
Eur J Clin Invest ; 46(7): 627-35, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27138992

RESUMO

BACKGROUND: Liver regeneration requires an enormous energy supply. Experimental evidence suggests that mitochondrial function is of paramount importance for liver regeneration. However, this has not been investigated in the clinical setting. We aimed to: (i) evaluate changes in mitochondrial function during hepatectomy, especially after hepatic pedicle clamping; and (ii) correlate these changes with postoperative hepatocellular function and clinical outcome. MATERIALS AND METHODS: Prospective study of thirty patients undergoing hepatectomy. Measurement of mitochondrial membrane potential, respiration and adenosine triphosphate content in intra-operative liver biopsies performed in nonresected parenchyma. Correlation of findings with duration of hepatic pedicle clamping, postoperative markers of hepatocellular necrosis and function (aminotransferases, arterial lactate, international normalized ratio, bilirubin), and morbidity. RESULTS: Longer hepatic pedicle clamping was associated with worse mitochondrial depolarization (r = -0·519; P = 0·011) and longer lag phase (r = 0·568; P = 0·006). Higher postoperative peak aminotransferases, international normalized ratio and bilirubin correlated with worse mitochondrial function (P < 0·05). After major hepatectomy, mitochondrial respiration correlated with postoperative arterial lactate clearance (r = 0·756; P = 0·049). Mitochondrial bioenergetic parameters were significantly decreased in patients with liver-specific morbidity and postoperative liver failure (P < 0·05). On multivariate analysis, decrease in mitochondrial potential was an independent risk factor for liver-specific morbidity (OR = 13·7; P = 0·043). Worse lag phase was highly predictive of posthepatectomy liver failure (area under the curve: 0·933; P = 0·008). CONCLUSIONS: There is a relationship between mitochondrial function, duration of hepatic pedicle clamping and clinical outcome after hepatectomy. Mitochondrial bioenergetics can potentially translate into clinical practice, assisting in earlier diagnosis of postoperative liver dysfunction, and as a target for future pharmacological therapies.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Hepatectomia , Hepatopatias/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Complicações Pós-Operatórias/metabolismo , Adenoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Bilirrubina/metabolismo , Colangiocarcinoma/cirurgia , Neoplasias Colorretais/patologia , Equinococose Hepática/cirurgia , Feminino , Humanos , Coeficiente Internacional Normatizado , Ácido Láctico/metabolismo , Fígado/patologia , Fígado/fisiologia , Fígado/cirurgia , Hepatopatias/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Análise Multivariada , Necrose , Complicações Pós-Operatórias/patologia , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA