Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biometals ; 34(1): 107-117, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180255

RESUMO

Octyltrimethylammonium tetrathiotungstate salt (ATT-C8) was synthesized and its ability to chelate copper was evaluated. The biological and toxic aspects were evaluated by in vitro and in vivo assays, using bovine aorta endothelial cells (BAEC) and zebrafish (Danio rerio) embryos. The obtained results suggest that ATT-C8 has better biocompatibility, showing a significantly lower lethal concentration 50 (LC50) value in comparison to ammonium tetrathiotungstate (ATT). Zebrafish embryos assay results indicate that both tetrathiotungstate salts at the studied concentrations increase the hatching time. Even more, an in vivo assay showed that synthesized materials behave as copper antagonists and have the ability to inhibit its toxicological effects. Also, both materials were found to be active for the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The characterization of the materials was carried out using the following spectroscopic techniques: Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR) and proton nuclear magnetic resonance (1H-NRM).


Assuntos
Antioxidantes/farmacologia , Compostos de Amônio Quaternário/farmacologia , Compostos de Tungstênio/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Estrutura Molecular , Picratos/antagonistas & inibidores , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Compostos de Tungstênio/síntese química , Compostos de Tungstênio/química
2.
Acta Biomater ; 68: 272-285, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288822

RESUMO

The osteogenic and angiogenic responses of organisms to the ionic products of degradation of bioactive glasses (BGs) are being intensively investigated. The promotion of angiogenesis by copper (Cu) has been known for more than three decades. This element can be incorporated to delivery carriers, such as BGs, and the materials used in biological assays. In this work, Cu-containing mesoporous bioactive glass (MBG) in the SiO2-CaO-P2O5 compositional system was prepared incorporating 5% mol Cu (MBG-5Cu) by replacement of the corresponding amount of Ca. The biological effects of the ionic products of MBG biodegradation were evaluated on a well-known endothelial cell line, the bovine aorta endothelial cells (BAEC), as well as in an in vivo zebrafish (Danio rerio) embryo assay. The results suggest that ionic products of both MBG (Cu free) and MBG-5Cu materials promote angiogenesis. In vitro cell cultures show that the ionic dissolution products of these materials are not toxic and promote BAEC viability and migration. In addition, the in vivo assay indicates that both exposition and microinjection of zebrafish embryos with Cu free MBG material increase vessel number and thickness of the subintestinal venous plexus (SIVP), whereas assays using MBG-5Cu enhance this effect. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glasses (MBGs) with high specific surface area, well-ordered pores, large pore volumes and controllable amount of ions are interesting to develop controlled drug delivery systems for bone tissue regeneration. Copper (Cu) incorporation to the basic SiO2-CaO-P2O5 composition has attracted high interest due to its multifunctional biological properties. Promotion of angiogenesis is one of these properties, which can be integrated to the biomaterial with lower cost and higher stability when compared with growth factors. This work reports the synthesis and characterization of Cu-containing MBG evaluating its angiogenic properties in the subintestinal vessel zebrafish assay. This transgenic in vivo assay is merging as an alternative model providing short-time consuming protocols and facilities during pro-angiogenic drug screenings. The report shows that the ionic products of this MBG material delivered to the zebrafish incubation media significantly enhance angiogenesis in comparison with control groups. Besides, results indicate Cu ions may exhibit a synergic effect with Si, Ca, and P ions in angiogenesis stimulation both in vitro and in vivo. To our knowledge, this is the first time that zebrafish in vivo assays are used to evaluate angiogenic activity of ionic dissolution products from MBG materials.


Assuntos
Cerâmica/farmacologia , Cobre/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Aorta/citologia , Bovinos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Intestinos/irrigação sanguínea , Íons , Microinjeções , Modelos Animais , Porosidade , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA