RESUMO
Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética , Fosforilação , Ligação ProteicaRESUMO
Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca2+ influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca2+ influx promote increases in both synaptic strength and dendritic spine size through activation of Ca2+-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca2+ influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca2+-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-ß (Aß) may impair learning and memory through biasing NMDAR Ca2+ signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aß-mediated impairment of NMDAR synaptic Ca2+ influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aß acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca2+ influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aß-mediated synaptic dysfunction.
Assuntos
Proteínas de Ancoragem à Quinase A , Peptídeos beta-Amiloides , Calcineurina , Espinhas Dendríticas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Animais , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Espinhas Dendríticas/metabolismo , Calcineurina/metabolismo , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Masculino , Feminino , Peptídeos beta-Amiloides/metabolismo , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Hipocampo/patologiaRESUMO
BACKGROUND: Computed tomography (CT) is recommended for guiding transcatheter aortic valve replacement (TAVR). However, a sizable proportion of TAVR candidates have chronic kidney disease, in whom the use of iodinated contrast media is a limitation. Cardiac magnetic resonance imaging (CMR) is a promising alternative, but randomized data comparing the effectiveness of CMR-guided versus CT-guided TAVR are lacking. METHODS: An investigator-initiated, prospective, randomized, open-label, noninferiority trial was conducted at 2 Austrian heart centers. Patients evaluated for TAVR according to the inclusion criteria (severe symptomatic aortic stenosis) and exclusion criteria (contraindication to CMR, CT, or TAVR, a life expectancy <1 year, or chronic kidney disease level 4 or 5) were randomized (1:1) to undergo CMR or CT guiding. The primary outcome was defined according to the Valve Academic Research Consortium-2 definition of implantation success at discharge, including absence of procedural mortality, correct positioning of a single prosthetic valve, and proper prosthetic valve performance. Noninferiority was assessed using a hybrid modified intention-to-treat/per-protocol approach on the basis of an absolute risk difference margin of 9%. RESULTS: Between September 11, 2017, and December 16, 2022, 380 candidates for TAVR were randomized to CMR-guided (191 patients) or CT-guided (189 patients) TAVR planning. Of these, 138 patients (72.3%) in the CMR-guided group and 129 patients (68.3%) in the CT-guided group eventually underwent TAVR (modified intention-to-treat cohort). Of these 267, 19 patients had protocol deviations, resulting in a per-protocol cohort of 248 patients (121 CMR-guided, 127 CT-guided). In the modified intention-to-treat cohort, implantation success was achieved in 129 patients (93.5%) in the CMR group and in 117 patients (90.7%) in the CT group (between-group difference, 2.8% [90% CI, -2.7% to 8.2%]; P<0.01 for noninferiority). In the per-protocol cohort (n=248), the between-group difference was 2.0% (90% CI, -3.8% to 7.8%; P<0.01 for noninferiority). CONCLUSIONS: CMR-guided TAVR was noninferior to CT-guided TAVR in terms of device implantation success. CMR can therefore be considered as an alternative for TAVR planning. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03831087.
Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Insuficiência Renal Crônica , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/métodos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Estudos Prospectivos , Resultado do Tratamento , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética , Insuficiência Renal Crônica/cirurgia , Fatores de RiscoRESUMO
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E â Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z â E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
RESUMO
Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints. Articular cartilage and subchondral bone from 9 human femoral heads were obtained after total joint arthroplasty, homogenized and metabolites were extracted for liquid chromatography-mass spectrometry analysis. Metabolomic profiling revealed that distinct metabolic endotypes exist between osteoarthritic tissues, late-stage grades, and regions of the diseased joint. The pathways that contributed the most to these differences between tissues were associated with lipid and amino acid metabolism. Differences between grades were associated with nucleotide, lipid, and sugar metabolism. Specific metabolic pathways such as glycosaminoglycan degradation and amino acid metabolism, were spatially constrained to more superior regions of the femoral head. These results suggest that radiography-confirmed grades III and IV osteoarthritis are associated with distinct global metabolic and that metabolic shifts are not uniform across the joint. The results of this study enhance our understanding of osteoarthritis pathogenesis and may lead to potential drug targets to slow, halt, or reverse tissue damage in late stages of osteoarthritis.
Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Osteoartrite/patologia , Cartilagem Articular/metabolismo , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/metabolismo , Radiografia , Aminoácidos/metabolismo , LipídeosRESUMO
PURPOSE: Nonmuscle-invasive bladder cancer (NMIBC) has high recurrence rates and is often treated with mitomycin C (MMC) and bacillus Calmette-Guérin (BCG). Their efficacy relies on phase 2 enzyme metabolism and immune response activation, respectively. Dietary isothiocyanates, phytochemicals in cruciferous vegetables, are phase 2 enzyme inducers and immunomodulators, and may impact treatment outcomes. We investigated the modifying effects of cruciferous vegetable and isothiocyanate intake on recurrence risk following MMC or BCG treatment. MATERIALS AND METHODS: Self-reported cruciferous vegetable intake, estimated isothiocyanate intake, and urinary isothiocyanate metabolites were collected from 1158 patients with incident NMIBC in the prospective Be-Well Study. Hazard ratios (HRs) and 95% CIs were calculated from Cox proportional hazards regression models for risk of first recurrences, and random effects Cox shared frailty models for multiple recurrences. RESULTS: Over median follow-up of 23 months, 343 (30%) recurrences occurred. Receipt of MMC and BCG was associated with decreased risks of first recurrence (MMC: HR = 0.58; 95% CI: 0.46-0.73; BCG: HR = 0.66; 95% CI: 0.49-0.88) and multiple recurrences (MMC: HR = 0.55; 95% CI: 0.44-0.68; BCG: HR = 0.72; 95% CI: 0.55-0.95). Patients receiving BCG and having high intake (>2.4 servings/mo), but not low intake, of raw cruciferous vegetables had reduced risk of recurrence (HR: 0.56; 95% CI: 0.36-0.86; P for interaction = .02) and multiple recurrences (HR: 0.51; 95% CI: 0.34-0.77; P for interaction < .001). The inverse association between MMC receipt and recurrence risk was not modified. CONCLUSIONS: For NMIBC patients who receive induction BCG, increasing consumption of raw cruciferous vegetables could be a promising strategy to attenuate recurrence risk.
Assuntos
Vacina BCG , Isotiocianatos , Mitomicina , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Mitomicina/uso terapêutico , Vacina BCG/uso terapêutico , Vacina BCG/administração & dosagem , Masculino , Feminino , Isotiocianatos/uso terapêutico , Isotiocianatos/farmacologia , Estudos Prospectivos , Idoso , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/epidemiologia , Resultado do Tratamento , Antibióticos Antineoplásicos/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Dieta , Invasividade Neoplásica , SeguimentosRESUMO
OBJECTIVE: To provide a comprehensive and insightful summary of studies on molecular biomarkers at the gene, protein, and metabolite levels across different sample types and joints affected by osteoarthritis (OA). METHODS: A literature search using the PubMed database for publications on OA biomarkers published between April 1, 2023 and April 30, 2024 was performed. Publications were then screened, examined at length, and summarized in a narrative review. RESULTS: Out of the 364 papers initially identified, 44 publications met inclusion criteria, were relevant to OA, and were further examined for data extraction and discussion. These studies included 1 genomic analysis, 22 on protein markers, 6 on metabolite markers, 9 on inflammatory mediators, and 6 integrating multiple molecular levels. CONCLUSIONS: Significant advancements have been made in identifying molecular biomarkers for OA, encompassing various joints, sample types, and molecular levels. Despite this progress, gaps remain, particularly in the need for validation, larger sample sizes, the integration of more clinical data, and consideration of covariates. For early detection and improved treatment of OA, continued efforts in biomarker identification are needed. This effort should seek to identify effective biomarkers that advance early detection, support prevention, evaluate interventions, and improve patient outcomes.
RESUMO
OBJECTIVE: Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females. DESIGN: We compiled clinical data from multiple tissues within the knee joint-since OA is a whole joint disorder-aiming to reveal relevant factors behind the sex differences from different perspectives. RESULTS: The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures. CONCLUSIONS: We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.
Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/epidemiologia , Feminino , Masculino , Fatores Sexuais , Cartilagem Articular/metabolismo , Fatores de Risco , Articulação do Joelho , Caracteres Sexuais , Fatores Etários , Traumatismos em Atletas , CriançaRESUMO
OBJECTIVE: Alterations to bone-to-cartilage fluid transport may contribute to the development of osteoarthritis (OA). Larger biological molecules in bone may transport from bone-to-cartilage (e.g., insulin, 5 kDa). However, many questions remain about fluid transport between these tissues. The objectives of this study were to (1) test for diffusion of 3 kDa molecular tracers from bone-to-cartilage and (2) assess potential differences in bone-to-cartilage fluid transport between different loading conditions. DESIGN: Osteochondral cores extracted from bovine femurs (N = 10 femurs, 10 cores/femur) were subjected to either no-load (i.e., pure diffusion), pre-load only, or cyclic compression (5 ± 2% or 10 ± 2% strain) in a two-chamber bioreactor. The bone was placed into the bone compartment followed by a 3 kDa dextran tracer, and tracer concentrations in the cartilage compartment were measured every 5 min for 120 min. Tracer concentrations were analyzed for differences in beginning, peak, and equilibrium concentrations, loading effects, and time-to-peak tracer concentration. RESULTS: Peak tracer concentration in the cartilage compartment was significantly higher compared to the beginning and equilibrium tracer concentrations. Cartilage-compartment tracer concentration and maximum fluorescent intensity were influenced by strain magnitude. No time-to-peak relationship was found between strain magnitudes and cartilage-compartment tracer concentration. CONCLUSION: This study shows that bone-to-cartilage fluid transport occurs with 3 kDa dextran molecules. These are larger molecules to move between bone and cartilage than previously reported. Further, these results demonstrate the potential impact of cyclic compression on osteochondral fluid transport. Determining the baseline osteochondral fluid transport in healthy tissues is crucial to elucidating the mechanisms OA pathology.
Assuntos
Cartilagem Articular , Fêmur , Animais , Bovinos , Cartilagem Articular/metabolismo , Fêmur/metabolismo , Transporte Biológico/fisiologia , Suporte de Carga/fisiologia , Difusão , Dextranos/metabolismo , Reatores Biológicos , Estresse MecânicoRESUMO
OBJECTIVE: Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN: We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS: Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS: Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
Assuntos
Osteoartrite , Proteômica , Humanos , Metabolômica , Perfilação da Expressão Gênica , Proteoma , Osteoartrite/genética , Osteoartrite/metabolismoRESUMO
OBJECTIVE: Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN: In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS: Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS: Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Assuntos
Metilação de DNA , Epigenômica , Genômica , Osteoartrite , Humanos , Osteoartrite/genética , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Predisposição Genética para DoençaRESUMO
T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.
Assuntos
Calorimetria , Polinucleotídeo 5'-Hidroxiquinase , Cinética , Calorimetria/métodos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Termodinâmica , Bacteriófago T4/enzimologia , Difosfatos/química , Difosfatos/metabolismo , FosforilaçãoRESUMO
A series of oligothiophenes singly and doubly functionalized with dicyanorhodanine (RCN) units have been investigated to understand their Z/E photoisomerization behavior upon structural modulation. Monotopic RCN target molecules (1-Z-9-Z) were designed to observe the consequences of π-conjugation, solubilizing group substitution, and formylation of the thiophene units. In all cases, the Z isomer is obtained from synthesis as the thermodynamically stable isomer, whereas the E isomer is achieved through selective irradiation (including red light, λirr = 628 nm) as a Z/E mixture in solution. For the quarterthiophene entries, photoisomerization is inhibited, with photoirradiation resulting only in degradation. The result comports with concentration-dependent studies, which show that increasing π-conjugation results in greater aggregation and muted Z/E photoisomerization. Ditopic RCN targets (10-ZZ-12-ZZ), mimicking acceptor-donor-acceptor (A-D-A) oligomers relevant to OPV materials, also show evidence of photoisomerization in solution, with formation of Z,Z/Z,E mixtures at the photostationary state (PSS). Complementary ground- and excited-state DFT calculations show excellent agreement with the experimental findings. This comprehensive structure-property analysis is expected to both guide and caution the functional materials community with respect to the usage of photoisomerizable RCN-oligothiophenes for optoelectronic applications.
RESUMO
This corrects the article DOI: 10.1038/nature24646.
RESUMO
BACKGROUND: Normal pressure hydrocephalus (NPH) occurs when the brain ventricles expand, causing a triad of gait, cognitive, and urinary impairment. It can occur after a clear brain injury such as trauma, but can also occur without a clear cause (termed idiopathic, or iNPH). Non-randomised studies have shown a benefit from surgically diverting ventricular fluid to an area of lower pressure by cerebrospinal fluid (CSF)-shunting in iNPH, but historically there have been limited randomised controlled trial (RCT) data to confirm this. OBJECTIVES: To determine the effect of CSF-shunting versus no CSF-shunting in people with iNPH and the frequency of adverse effects of CSF-shunting in iNPH. SEARCH METHODS: We searched the Cochrane Dementia and Cognitive Improvement Group's register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid SP), Embase (Ovid SP), PsycINFO (Ovid SP), CINAHL (EBSCOhost), Web of Science Core Collection (Clarivate), LILACS (BIREME), ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform on 15 February 2023. SELECTION CRITERIA: We included only RCTs of people who had symptoms of gait, cognitive, or urinary impairment with communicating hydrocephalus (Evans index of > 0.3) and normal CSF pressure. Control groups included those with no CSF shunts or those with CSF shunts that were in 'inactive' mode. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Where necessary, we contacted study authors requesting data not provided in the papers. We assessed the overall certainty of the evidence using GRADE. MAIN RESULTS: We included four RCTs, of which three were combined in a meta-analysis. The four RCTs included 140 participants (73 with immediate CSF-shunting and 67 controls who had delayed CSF-shunting) with an average age of 75 years. Risk of bias was low in all parallel-group outcomes evaluated apart from gait speed, cognitive function (general cognition and Symbol Digit Test) (some concerns) and adverse events, which were not blind-assessed. CSF-shunting probably improves gait speed at less than six months post-surgery (standardised mean difference (SMD) 0.62, 95% confidence interval (CI) 0.24 to 0.99; 3 studies, 116 participants; moderate-certainty evidence). CSF-shunting may improve qualitative gait function at less than six months post-surgery by an uncertain amount (1 study, 88 participants; low-certainty evidence). CSF-shunting probably results in a large reduction of disability at less than six months post-surgery (risk ratio 2.08, 95% CI 1.31 to 3.31; 3 studies, 118 participants; moderate-certainty evidence). The evidence is very uncertain about the effect of CSF-shunting on cognitive function at less than six months post-CSF-shunt surgery (SMD 0.35, 95% CI -0.04 to 0.74; 2 studies, 104 participants; very low-certainty evidence). The evidence is also very uncertain about the effect of CSF-shunt surgery on adverse events (1 study, 88 participants; very low-certainty evidence). There were no data regarding the effect of CSF-shunting on quality of life. AUTHORS' CONCLUSIONS: We found moderate-certainty evidence that CSF-shunting likely improves gait speed and disability in iNPH in the relative short term. The evidence is very uncertain regarding cognition and adverse events. There were no longer-term RCT data for any of our prespecified outcomes. More studies are required to improve the certainty of these findings. In addition, more information is required regarding patient ethnicity and the effect of CSF-shunting on quality of life.
Assuntos
Viés , Derivações do Líquido Cefalorraquidiano , Hidrocefalia de Pressão Normal , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Hidrocefalia de Pressão Normal/cirurgia , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Idoso , Cognição , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologiaRESUMO
The Ross procedure is an excellent option for aortic valve replacement resulting in outstanding hemodynamic performance and the ability to avoid systemic anticoagulation. The long-term durability of the autograft is generally good but concerns for later aortic root dilation with ensuing neoaortic insufficiency have prompted efforts to stabilize the autograft, root, sinuses and Sino-tubular junction in order to delay or entirely avoid late reinterventions on the neoaortic root. We have employed an inclusion technique, supporting the Auto-graft in a Terumo Gelweave™ Valsalva graft. We performed a retrospective study of all 129 patients undergoing the Ross procedure from 1992 to 2019 at Children's Wisconsin. Fifty-one underwent the supported Ross (SR) and 78 underwent unsupported Ross (UR). Structured clinical data was collected and echocardiograms were reviewed. Median follow-up was 4.9 years (up to 22.6 years) for UR patients and 3.6 years (up to 11.4 years) for SR patients. In order to provide a fair comparison, we sub -analyzed patients aged 10 to 18 years who underwent the Ross procedure, 16 who underwent the UR and 18 patients who underwent the SR. Change in aortic annulus diameter (P = 0.002), aortic sinus diameter (P = 0.001) change in left ventricular function (P = 0.039) and change in aortic insufficiency (P = 0.008) were all worse in UR. The SR is simple, reproducible, and predictable. It seems to prevent change in annulus diameter, sinus diameter and to reduce late neoaortic insufficiency. Longer follow-up with a larger group of patients is required to draw definitive conclusions.
Assuntos
Insuficiência da Valva Aórtica , Estenose da Valva Aórtica , Valva Pulmonar , Criança , Humanos , Autoenxertos , Estudos Retrospectivos , Dilatação , Transplante Autólogo , Valva Aórtica/cirurgia , Insuficiência da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Dilatação Patológica , Valva Pulmonar/cirurgia , SeguimentosRESUMO
Severity assessment for coarctation of the aorta (CoA) is challenging due to concomitant morphological anomalies (complex CoA) and inaccurate Doppler-based indices. Promising diagnostic performance has been reported for the continuous flow pressure gradient (CFPG), but it has not been studied in complex CoA. Our objective was to characterize the effect of complex CoA and associated hemodynamics on CFPG in a clinical cohort. Retrospective analysis identified discrete juxtaductal (n = 25) and complex CoA (n = 43; transverse arch and/or isthmus hypoplasia) patients with arm-leg systolic blood pressure gradients (BPG) within 24 h of echocardiography for comparison to BPG by conventional Doppler indices (simplified Bernoulli equation and modified forms correcting for proximal kinetic energy and/or recovered pressure). Results were interpreted using the current CoA guideline (BPG ≥ 20 mmHg) to compare diagnostic performance indicators including receiver operating characteristic curves, sensitivity, specificity, and diagnostic accuracy, among others. Echocardiography Z-scored aortic diameters were applied with computational simulations from a preclinical CoA model to understand aspects of the CFPG driving performance differences. Diagnostic performance was substantially reduced from discrete to complex CoA for conventional Doppler indices calculated from patient data, and by hypoplasia and/or long segment stenosis in simulations. In contrast, diagnostic indicators for the CFPG only modestly dropped for complex vs discrete CoA. Simulations revealed differences in performance due to inclusion of the Doppler velocity index and diastolic pressure half-time in the CFPG calculation. CFPG is less affected by aortic arch anomalies co-existing with CoA when compared to conventional Doppler indices.
RESUMO
OBJECTIVE: This study examined how frontline nurse managers (FLNMs) perceive and experience formal and informal social support and how personal factors and social support relate to their transformational leadership (TL) behaviors. BACKGROUND: Ineffective leadership by FLNMs is associated with costly outcomes. Evidence suggests that leadership development is a function of personal and social factors; however, a better understanding of this process is needed. METHODS: A convergent mixed-methods design was used. The quantitative strand included a cross-sectional survey in a sample of FLNMs. The qualitative strand used a semistructured interview and a descriptive qualitative approach with a subset of this sample. RESULTS: Formal and informal social support is positively related to the TL behaviors of FLNMs as evidenced by the convergent data. The influence of family members in the work-related decisions of FLNMs has been underreported in the literature and is an area for consideration in supporting retention and desired leadership behaviors. CONCLUSION: The findings of this study imply a need for organizations to establish systems that endorse the growth of FLNMS, create opportunities for career advancement, and integrate members of the FLNMs' personal support systems into recognition initiatives.
Assuntos
Acidose Láctica , Enfermeiros Administradores , Humanos , Estudos Transversais , Liderança , Apoio SocialRESUMO
Presented here is the design, synthesis, and study of a variety of novel hydrogen-bonding-capable π-conjugated N-heteroacenes, 1,4-dihydropyrazino[2,3-b]quinoxaline-2,3-diones (DPQDs). The DPQDs were accessed from the corresponding weakly hydrogen-bonding dicyanopyrazinoquinoxaline (DCPQ) suspensions with excess potassium hydroxide, resulting in moderate to good yields. Both families of compounds were analyzed by UV-vis and NMR spectroscopy, where the consequences of hydrogen bonding capability could be assessed through the structure-property studies. Conversion of the DCPQs into hydrogen-bonding capable DPQDs results in modulation of frontier MO energies, higher molar extinction coefficients, enhanced crystallinity, and on-average higher thermal stability (where in some cases the 5% weight loss temperature is increased by up to 100 °C). Single crystal X-ray diffraction data could be obtained for three DPQDs. One reveals pairwise hydrogen bonding in the solid state as well as a herringbone packing arrangement rendering it a promising candidate for additional studies in the context of organic optoelectronic devices.
RESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.