Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 23(1): 567, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941547

RESUMO

BACKGROUND: Acer pseudosieboldianum is a kind of excellent color-leafed plants, and well known for its red leaves in autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it plays an important role in improving the lack of color-leafed plants in the north. In previous study, we found a mutant of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which genes cause the color change of mutant leaves. RESULTS: In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 (62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription factors, and eight genes associated with flavonoid transport. CONCLUSION: Our results provided comprehensive gene expression information about A. pseudosieboldianum transcriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide insights into leaf coloring of it through transcriptome sequencing and analysis.


Assuntos
Acer , Transcriptoma , Acer/genética , Acer/metabolismo , Antocianinas , Flavonoides/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
BMC Genomics ; 22(1): 383, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034673

RESUMO

BACKGROUND: Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. RESULTS: Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. CONCLUSIONS: Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


Assuntos
Acer , Antocianinas , Acer/genética , Acer/metabolismo , China , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(4): 325-9, 2014 Apr.
Artigo em Zh | MEDLINE | ID: mdl-24750823

RESUMO

Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.


Assuntos
Intoxicação por Metais Pesados , Nefropatias/induzido quimicamente , Intoxicação/complicações , Intoxicação por Cádmio , Criança , Cromo/intoxicação , Humanos , Intoxicação por Chumbo , Intoxicação por Mercúrio
4.
World J Pediatr ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853276

RESUMO

BACKGROUND: Pediatric antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a life-threatening systemic vasculitis featured by liability to renal involvement. However, there are few studies on the risk factors and predictive models for renal outcomes of AAV in children. METHODS: Data from 179 AAV children in multiple centers between January 2012 and March 2020 were collected retrospectively. The risk factors and predictive model of end-stage renal disease (ESRD) in AAV were explored. RESULTS: Renal involvement was the most typical manifestation (95.5%), and the crescent was the predominant pathological lesion (84.9%). The estimated glomerular filtration rate (eGFR) was evaluated in 114 patients, of whom 59.6% developed ESRD, and the median time to ESRD was 3.20 months. The eGFR [P = 0.006, odds ratio (OR) = 0.955, 95% confidence interval (CI) = 0.924-0.987] and the percentages of global glomerulosclerosis (pGGS; P = 0.018, OR = 1.060, 95% CI = 1.010-1.112) were independent risk factors for ESRD of renal biopsy. Based on the pGGS and eGFR at renal biopsy, we developed three risk grades of ESRD and one predictive model. The Kaplan‒Meier curve indicated that renal outcomes were significantly different in different risk grades (P < 0.001). Compared with serum creatinine at baseline, the predictive model had higher accuracy (0.86 versus 0.58, P < 0.001) and a lower coefficient of variation (0.07 versus 0.92) in external validation. CONCLUSIONS: Renal involvement is the most common manifestation of pediatric AAV in China, of which more than half deteriorates into ESRD. The predictive model based on eGFR at renal biopsy and the pGGS may be stable and accurate in speculating the risk of ESRD in AAV children. Supplementary file 2 (MP4 18937 KB).

5.
World J Pediatr ; 17(4): 409-418, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34059960

RESUMO

BACKGROUND: Primary vesicoureteral reflux (VUR) is a common congenital anomaly of the kidney and urinary tract (CAKUT) in childhood. The present study identified the possible genetic contributions to primary VUR in children. METHODS: Patients with primary VUR were enrolled and analysed based on a national multi-center registration network (Chinese Children Genetic Kidney Disease Database, CCGKDD) that covered 23 different provinces/regions in China from 2014 to 2019. Genetic causes were sought using whole-exome sequencing (WES) or targeted-exome sequencing. RESULTS: A total of 379 unrelated patients (male: female 219:160) with primary VUR were recruited. Sixty-four (16.9%) children had extrarenal manifestations, and 165 (43.5%) patients showed the coexistence of other CAKUT phenotypes. Eighty-eight patient (23.2%) exhibited impaired renal function at their last visit, and 18 of them (20.5%) developed ESRD at the median age of 7.0 (IQR 0.9-11.4) years. A monogenic cause was identified in 28 patients (7.39%). These genes included PAX2 (n = 4), TNXB (n = 3), GATA3 (n = 3), SLIT2 (n = 3), ROBO2 (n = 2), TBX18 (n = 2), and the other 11 genes (one gene for each patient). There was a significant difference in the rate of gene mutations between patients with or without extrarenal complications (14.1% vs. 6%, P = 0.035). The frequency of genetic abnormality was not statistically significant based on the coexistence of another CAKUT (9.6% vs. 5.6%, P = 0.139, Chi-square test) and the grade of reflux (9.4% vs. 6.7%, P = 0.429). Kaplan-Meier survival curve showed that the presence of genetic mutations did affect renal survival (Log-rank test, P = 0.01). PAX2 mutation carriers (HR 5.1, 95% CI 1.3-20.0; P = 0.02) and TNXB mutation carriers (HR 20.3, 95% CI 2.4-168.7; P = 0.01) were associated with increased risk of progression to ESRD. CONCLUSIONS: PAX2, TNXB, GATA3 and SLIT2 were the main underlying monogenic causes and accounted for up to 46.4% of monogenic VUR. Extrarenal complications and renal function were significantly related to the findings of genetic factors in children with primary VUR. Like other types of CAKUT, several genes may be responsible for isolated VUR.


Assuntos
Nefropatias , Sistema Urinário , Refluxo Vesicoureteral , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Rim , Masculino , Fenótipo , Refluxo Vesicoureteral/diagnóstico , Refluxo Vesicoureteral/epidemiologia , Refluxo Vesicoureteral/genética
6.
World J Pediatr ; 15(3): 262-269, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30864060

RESUMO

BACKGROUND: Mizoribine (MZR) is an immunosuppressant used to treat adult nephropathy. There is little experience with the drug in treating Chinese children with frequently relapsing nephrotic syndrome (FRNS). We investigated the efficacy and safety for treating MZR with FRNS. Furthermore, the relationship between efficacy and serum concentration was investigated. METHODS: A prospective multicenter observational 12-month study was performed for evaluating the usefulness of MZR with FRNS. Serum MZR concentration was measured, and the relationships between pharmacokinetic parameters (Cmax, AUC), number of relapses, and urinary protein were evaluated. RESULTS: Eighty-two pediatric patients from four hospitals were treated with MZR and prednisone. MZR treatment significantly reduced the number of relapses and steroid doses. A correlation between pharmacokinetic parameters and relapses was observed, which fits well with the sigmoidal Emax model. Even in the relationship between pharmacokinetic parameters and urinary proteins, it was recognized that there was a threshold in the pharmacokinetic parameters for the therapeutic effect similar to the results obtained with the sigmoidal Emax model. Eleven patients (13.4%) experienced mild adverse events. CONCLUSIONS: MZR therapy was effective in reducing the number of relapses and steroid doses. No severe adverse reactions were observed. Therapeutically effective serum concentrations were estimated to be Cmax ≥ about 2 µg/mL or AUC ≥ about 10 µg h/mL. MZR and steroid treatment were effective and safe for pediatric FRNS.


Assuntos
Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Ribonucleosídeos/farmacocinética , Ribonucleosídeos/uso terapêutico , Adolescente , Criança , Pré-Escolar , China , Feminino , Humanos , Masculino , Estudos Prospectivos , Recidiva
7.
Biomed Res Int ; 2015: 843470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26788511

RESUMO

Acer palmatum Thunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant "Jingling Huangfeng" turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result in A. palmatum significant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs of A. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms of Acer palmatum leaf coloration.


Assuntos
Acer/genética , MicroRNAs/biossíntese , Fotossíntese , Folhas de Planta/genética , Acer/crescimento & desenvolvimento , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Luz , MicroRNAs/genética , Mutação , Folhas de Planta/crescimento & desenvolvimento , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA