Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L308-L320, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34037494

RESUMO

The association of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) in the pathophysiology of cystic fibrosis (CF) is controversial. Previously, we demonstrated a close physical association between wild-type (WT) CFTR and WT ENaC. We have also shown that the F508del CFTR fails to associate with ENaC unless the mutant protein is rescued pharmacologically or by low temperature. In this study, we present the evidence for a direct physical association between WT CFTR and ENaC subunits carrying Liddle's syndrome mutations. We show that all three ENaC subunits bearing Liddle's syndrome mutations (both point mutations and the complete truncation of the carboxy terminus), could be coimmunoprecipitated with WT CFTR. The biochemical studies were complemented by fluorescence lifetime imaging microscopy (FLIM), a distance-dependent approach that monitors protein-protein interactions between fluorescently labeled molecules. Our measurements revealed significantly increased fluorescence resonance energy transfer between CFTR and all tested ENaC combinations as compared with controls (ECFP and EYFP cotransfected cells). Our findings are consistent with the notion that CFTR and ENaC are within reach of each other even in the setting of Liddle's syndrome mutations, suggestive of a direct intermolecular interaction between these two proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Síndrome de Liddle/metabolismo , Mutação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Síndrome de Liddle/genética , Síndrome de Liddle/patologia
2.
Am J Physiol Cell Physiol ; 309(5): C308-19, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26108662

RESUMO

Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-ß1. Short hairpin RNA knockdown of integrin-ß1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-ß1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-ß1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-ß1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Actinas/metabolismo , Glioma/metabolismo , Integrina beta1/metabolismo , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Ligação Proteica/fisiologia
3.
J Biol Chem ; 287(6): 4053-65, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22130665

RESUMO

In this study, we have investigated the role of a glioma-specific cation channel assembled from subunits of the Deg/epithelial sodium channel (ENaC) superfamily, in the regulation of migration and cell cycle progression in glioma cells. Channel inhibition by psalmotoxin-1 (PcTX-1) significantly inhibited migration and proliferation of D54-MG glioma cells. Both PcTX-1 and benzamil, an amiloride analog, caused cell cycle arrest of D54-MG cells in G(0)/G(1) phases (by 30 and 40%, respectively) and reduced cell accumulation in S and G(2)/M phases after 24 h of incubation. Both PcTX-1 and benzamil up-regulated expression of cyclin-dependent kinase inhibitor proteins p21(Cip1) and p27(Kip1). Similar results were obtained in U87MG and primary glioblastoma multiforme cells maintained in primary culture and following knockdown of one of the component subunits, ASIC1. In contrast, knocking down δENaC, which is not a component of the glioma cation channel complex, had no effect on cyclin-dependent kinase inhibitor expression. Phosphorylation of ERK1/2 was also inhibited by PcTX-1, benzamil, and knockdown of ASIC1 but not δENaC in D54MG cells. Our data suggest that a specific cation conductance composed of acid-sensing ion channels and ENaC subunits regulates migration and cell cycle progression in gliomas.


Assuntos
Pontos de Checagem do Ciclo Celular , Movimento Celular , Bloqueadores do Canal de Sódio Epitelial , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Amilorida/análogos & derivados , Amilorida/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Glioma/genética , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Peptídeos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Canais de Sódio/genética , Venenos de Aranha/farmacologia
4.
J Biol Chem ; 287(20): 16781-90, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22442149

RESUMO

An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Deleção de Sequência , Sódio/metabolismo , Membrana Celular/genética , Temperatura Baixa , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Transporte de Íons/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética
5.
Am J Physiol Cell Physiol ; 302(7): C943-65, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22277752

RESUMO

The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.


Assuntos
Agonistas do Canal de Sódio Epitelial , Bloqueadores do Canal de Sódio Epitelial , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Agonistas de Canais de Sódio , Canais Iônicos Sensíveis a Ácido , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo
6.
J Biol Chem ; 285(35): 27130-27143, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20601429

RESUMO

Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Serina Endopeptidases/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Oócitos , Serina Endopeptidases/genética , Canais de Sódio/genética , Xenopus
7.
BMC Microbiol ; 10: 16, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089192

RESUMO

BACKGROUND: Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 microM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. RESULTS: Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. CONCLUSION: The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.


Assuntos
Glucose/farmacocinética , Mucosa Intestinal/metabolismo , Lactobacillus acidophilus/metabolismo , Análise de Variância , Células CACO-2 , Isótopos de Carbono , Meios de Cultivo Condicionados , Humanos , Intestinos/microbiologia , Lactobacillus acidophilus/química , Probióticos , Transportador 1 de Glucose-Sódio/metabolismo , Simbiose , Regulação para Cima/efeitos dos fármacos
8.
Sci Adv ; 4(3): eaar2766, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29532035

RESUMO

Binding of programmed death ligand-1 (PD-L1) to programmed cell death protein-1 (PD1) leads to cancer immune evasion via inhibition of T cell function. One of the defining characteristics of glioblastoma, a universally fatal brain cancer, is its profound local and systemic immunosuppression. Glioblastoma has also been shown to generate extracellular vesicles (EVs), which may play an important role in tumor progression. We thus hypothesized that glioblastoma EVs may be important mediators of immunosuppression and that PD-L1 could play a role. We show that glioblastoma EVs block T cell activation and proliferation in response to T cell receptor stimulation. PD-L1 was expressed on the surface of some, but not of all, glioblastoma-derived EVs, with the potential to directly bind to PD1. An anti-PD1 receptor blocking antibody significantly reversed the EV-mediated blockade of T cell activation but only when PD-L1 was present on EVs. When glioblastoma PD-L1 was up-regulated by IFN-γ, EVs also showed some PD-L1-dependent inhibition of T cell activation. PD-L1 expression correlated with the mesenchymal transcriptome profile and was anatomically localized in the perinecrotic and pseudopalisading niche of human glioblastoma specimens. PD-L1 DNA was present in circulating EVs from glioblastoma patients where it correlated with tumor volumes of up to 60 cm3. These results suggest that PD-L1 on EVs may be another mechanism for glioblastoma to suppress antitumor immunity and support the potential of EVs as biomarkers in tumor patients.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/imunologia , Vesículas Extracelulares/metabolismo , Glioblastoma/imunologia , Evasão da Resposta Imune , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Regulação para Cima
9.
Cell Rep ; 19(10): 2026-2032, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591575

RESUMO

Large-scale transcriptomic profiling of glioblastoma (GBM) into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128) in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking.


Assuntos
Glioblastoma/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/metabolismo , Animais , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética
10.
Stem Cell Reports ; 8(6): 1497-1505, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528698

RESUMO

Despite the importance of molecular subtype classification of glioblastoma (GBM), the extent of extracellular vesicle (EV)-driven molecular and phenotypic reprogramming remains poorly understood. To reveal complex subpopulation dynamics within the heterogeneous intratumoral ecosystem, we characterized microRNA expression and secretion in phenotypically diverse subpopulations of patient-derived GBM stem-like cells (GSCs). As EVs and microRNAs convey information that rearranges the molecular landscape in a cell type-specific manner, we argue that intratumoral exchange of microRNA augments the heterogeneity of GSC that is reflected in highly heterogeneous profile of microRNA expression in GBM subtypes.


Assuntos
Neoplasias Encefálicas/patologia , Vesículas Extracelulares/metabolismo , Glioblastoma/patologia , MicroRNAs/metabolismo , Antígeno AC133/metabolismo , Animais , Neoplasias Encefálicas/genética , Exossomos/metabolismo , Feminino , Glioblastoma/genética , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Tetraspanina 30/metabolismo , Transcriptoma , Transplante Heterólogo , Células Tumorais Cultivadas
11.
Brain Tumor Pathol ; 33(2): 77-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26968172

RESUMO

To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intra-cellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/terapia , Proliferação de Células/genética , Inativação Gênica , Glioblastoma/terapia , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neovascularização Patológica/genética , Microambiente Tumoral/genética
12.
Cell Rep ; 15(11): 2500-9, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264189

RESUMO

Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo , Nicho de Células-Tronco , Hipóxia Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula , Progressão da Doença , Heterogeneidade Genética , Humanos , RNA Longo não Codificante/genética , RNA Neoplásico/metabolismo
13.
Cancer Res ; 76(10): 2876-81, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013191

RESUMO

A lack of experimental models of tumor heterogeneity limits our knowledge of the complex subpopulation dynamics within the tumor ecosystem. In high-grade gliomas (HGG), distinct hierarchical cell populations arise from different glioma stem-like cell (GSC) subpopulations. Extracellular vesicles (EV) shed by cells may serve as conduits of genetic and signaling communications; however, little is known about how HGG heterogeneity may impact EV content and activity. In this study, we performed a proteomic analysis of EVs isolated from patient-derived GSC of either proneural or mesenchymal subtypes. EV signatures were heterogeneous, but reflected the molecular make-up of the GSC and consistently clustered into the two subtypes. EV-borne protein cargos transferred between proneural and mesenchymal GSC increased protumorigenic behaviors in vitro and in vivo Clinically, analyses of HGG patient data from the The Cancer Genome Atlas database revealed that proneural tumors with mesenchymal EV signatures or mesenchymal tumors with proneural EV signatures were both associated with worse outcomes, suggesting influences by the proportion of tumor cells of varying subtypes in tumors. Collectively, our findings illuminate the heterogeneity among tumor EVs and the complexity of HGG heterogeneity, which these EVs help to maintain. Cancer Res; 76(10); 2876-81. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Carcinogênese , Vesículas Extracelulares/patologia , Glioma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Vesículas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Proteômica , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Rep ; 11(6): 902-909, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25937278

RESUMO

In aggressive, rapidly growing solid tumors such as glioblastoma multiforme (GBM), cancer cells face frequent dynamic changes in their microenvironment, including the availability of glucose and other nutrients. These challenges require that tumor cells have the ability to adapt in order to survive periods of nutrient/energy starvation. We have identified a reciprocal negative feedback loop mechanism in which the levels of microRNA-451 (miR-451) are negatively regulated through the phosphorylation and inactivation of its direct transcriptional activator OCT1 by 5' AMP-activated protein kinase (AMPK), which is activated by glucose depletion-induced metabolic stress. Conversely, in a glucose-rich environment, unrestrained expression of miR-451 suppresses AMPK pathway activity. These findings uncover miR-451 as a major effector of glucose-regulated AMPK signaling, allowing tumor cell adaptation to variations in nutrient availability in the tumor microenvironment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/farmacologia , MicroRNAs/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células 3T3 , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA