Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922678

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 viruses are responsible for disease outbreaks in wild birds and poultry, resulting in devastating losses to the poultry sector. Since 2020, an increasing number of outbreaks of HPAI H5N1 was seen in wild birds. Infections in mammals have become more common, in most cases in carnivores after direct contact with infected birds. Although ruminants were previously not considered a host species for HPAI viruses, in March 2024 multiple outbreaks of HPAI H5N1 were detected in goats and cattle in the United States. Here, we have used primary bronchus-derived well-differentiated bovine airway epithelial cells (WD-AECs) cultured at air-liquid interface to assess the susceptibility and permissiveness of bovine epithelial cells to infection with European H5N1 virus isolates. We inoculated bovine WD-AECs with three low-passage HPAI clade 2.3.4.4b H5N1 virus isolates and detected rapid increases in viral genome loads and infectious virus during the first 24 h post-inoculation, without substantial cytopathogenic effects. Three days post-inoculation infected cells were still detectable by immunofluorescent staining. These data indicate that multiple lineages of HPAI H5N1 may have the propensity to infect the respiratory tract of cattle and support extension of avian influenza surveillance efforts to ruminants. Furthermore, this study underscores the benefit of WD-AEC cultures for pandemic preparedness by providing a rapid and animal-free assessment of the host range of an emerging pathogen.


Assuntos
Células Epiteliais , Virus da Influenza A Subtipo H5N1 , Replicação Viral , Animais , Bovinos , Células Epiteliais/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Células Cultivadas
2.
Emerg Infect Dis ; 27(6): 1750-1753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013854

RESUMO

Highly pathogenic avian influenza A(H5N8) virus was detected in mute swans in the Netherlands during October 2020. The virus shares a common ancestor with clade 2.3.4.4b viruses detected in Egypt during 2018-2019 and has similar genetic composition. The virus is not directly related to H5N8 viruses from Europe detected in the first half of 2020.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Animais Selvagens , Egito , Europa (Continente) , Países Baixos , Filogenia
3.
Microbiol Spectr ; 11(1): e0286722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688676

RESUMO

During the 2020 to 2022 epizootic of highly pathogenic avian influenza virus (HPAI), several infections of mammalian species were reported in Europe. In the Netherlands, HPAI H5N1 virus infections were detected in three wild red foxes (Vulpes vulpes) that were submitted with neurological symptoms between December of 2021 and February of 2022. A histopathological analysis demonstrated that the virus was mainly present in the brain, with limited or no detection in the respiratory tract or other organs. Limited or no virus shedding was observed in throat and rectal swabs. A phylogenetic analysis showed that the three fox viruses were not closely related, but they were related to HPAI H5N1 clade 2.3.4.4b viruses that are found in wild birds. This suggests that the virus was not transmitted between the foxes. A genetic analysis demonstrated the presence of the mammalian adaptation E627K in the polymerase basic two (PB2) protein of the two fox viruses. In both foxes, the avian (PB2-627E) and the mammalian (PB2-627K) variants were present as a mixture in the virus population, which suggests that the mutation emerged in these specific animals. The two variant viruses were isolated, and virus replication and passaging experiments were performed. These experiments showed that the mutation PB2-627K increases the replication of the virus in mammalian cell lines, compared to the chicken cell line, and at the lower temperatures of the mammalian upper respiratory tract. This study showed that the HPAI H5N1 virus is capable of adaptation to mammals; however, more adaptive mutations are required to allow for efficient transmission between mammals. Therefore, surveillance in mammals should be expanded to closely monitor the emergence of zoonotic mutations for pandemic preparedness. IMPORTANCE Highly pathogenic avian influenza (HPAI) viruses caused high mortality among wild birds from 2021 to 2022 in the Netherlands. Recently, three wild foxes were found to be infected with HPAI H5N1 viruses, likely due to the foxes feeding on infected birds. Although HPAI is a respiratory virus, in these foxes, the viruses were mostly detected in the brain. Two viruses isolated from the foxes contained a mutation that is associated with adaptation to mammals. We show that the mutant virus replicates better in mammalian cells than in avian cells and at the lower body temperature of mammals. More mutations are required before viruses can transmit between mammals or can be transmitted to humans. However, infections in mammalian species should be closely monitored to swiftly detect mutations that may increase the zoonotic potential of HPAI H5N1 viruses, as these may threaten public health.


Assuntos
Raposas , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Animais Selvagens , Raposas/virologia , Virus da Influenza A Subtipo H5N1/genética , Mutação , Faringe , Filogenia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Tropismo Viral
4.
Viruses ; 11(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683727

RESUMO

Analysis of low pathogenic avian influenza (LPAI) viruses circulating in the Netherlands in a previous study revealed associations of specific hemagglutinin (HA) and neuraminidase (NA) subtypes with wild bird or poultry hosts. In this study, we identified putative host associations in LPAI virus internal proteins. We show that LPAI viruses isolated from poultry more frequently carried the allele A variant of the nonstructural protein (NS) gene, compared to wild bird viruses. We determined the susceptibility of chickens to wild bird-associated subtypes H3N8 and H4N6 and poultry-associated subtypes H8N4 and H9N2, carrying either NS allele A or B, in an infection experiment. We observed variations in virus shedding and replication patterns, however, these did not correlate with the predicted wild bird- or poultry-associations of the viruses. The experiment demonstrated that LPAI viruses of wild bird-associated subtypes can replicate in chickens after experimental infection, despite their infrequent detection in poultry. Although the NS1 protein is known to play a role in immune modulation, no differences were detected in the limited innate immune response to LPAI virus infection. This study contributes to a better understanding of the infection dynamics of LPAI viruses in chickens.


Assuntos
Aves/virologia , Suscetibilidade a Doenças/veterinária , Influenza Aviária/transmissão , Aves Domésticas/virologia , Animais , Animais Selvagens/virologia , Suscetibilidade a Doenças/virologia , Genes Virais , Imunidade Inata/genética , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Vírus da Influenza A , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA