RESUMO
We review the leaky competing accumulator model for two-alternative forced-choice decisions with cued responses, and propose extensions to account for the influence of unequal rewards. Assuming that stimulus information is integrated until the cue to respond arrives and that firing rates of stimulus-selective neurons remain well within physiological bounds, the model reduces to an Ornstein-Uhlenbeck (OU) process that yields explicit expressions for the psychometric function that describes accuracy. From these we compute strategies that optimize the rewards expected over blocks of trials administered with mixed difficulty and reward contingencies. The psychometric function is characterized by two parameters: its midpoint slope, which quantifies a subject's ability to extract signal from noise, and its shift, which measures the bias applied to account for unequal rewards. We fit these to data from two monkeys performing the moving dots task with mixed coherences and reward schedules. We find that their behaviors averaged over multiple sessions are close to optimal, with shifts erring in the direction of smaller penalties. We propose two methods for biasing the OU process to produce such shifts.
Assuntos
Teoria da Decisão , Modelos Psicológicos , Psicometria/métodos , Recompensa , Animais , Comportamento de Escolha , Sinais (Psicologia) , Atividade Nervosa Superior , Macaca mulatta , Masculino , Movimento , Estimulação Luminosa , Análise e Desempenho de TarefasRESUMO
A new fMRI study by Heekeren and colleagues suggests that left dorsolateral prefrontal cortex (DLPFC) contains a region that integrates sensory evidence supporting perceptual decisions. DLPFC meets two criteria posited by Heekeren et al. for such a region: (1) its activity is correlated in time with the output of sensory areas of the visual cortex measured simultaneously, and (2) as expected of an integrator, its activity is greater on trials for which the sensory evidence is substantial than on trials for which the sensory evidence is weak. Complementary experiments in humans and monkeys now offer a realistic hope of elucidating decision-making networks in the primate brain.
Assuntos
Mapeamento Encefálico , Tomada de Decisões/fisiologia , Processos Mentais/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Animais , Movimentos Oculares/fisiologia , Haplorrinos , Humanos , Imageamento por Ressonância Magnética , Percepção de Movimento/fisiologia , Estimulação LuminosaRESUMO
Single neurons in cortical area LIP are known to carry information relevant to both sensory and value-based decisions that are reported by eye movements. It is not known, however, how sensory and value information are combined in LIP when individual decisions must be based on a combination of these variables. To investigate this issue, we conducted behavioral and electrophysiological experiments in rhesus monkeys during performance of a two-alternative, forced-choice discrimination of motion direction (sensory component). Monkeys reported each decision by making an eye movement to one of two visual targets associated with the two possible directions of motion. We introduced choice biases to the monkeys' decision process (value component) by randomly interleaving balanced reward conditions (equal reward value for the two choices) with unbalanced conditions (one alternative worth twice as much as the other). The monkeys' behavior, as well as that of most LIP neurons, reflected the influence of all relevant variables: the strength of the sensory information, the value of the target in the neuron's response field, and the value of the target outside the response field. Overall, detailed analysis and computer simulation reveal that our data are consistent with a two-stage drift diffusion model proposed by Diederich and Bussmeyer for the effect of payoffs in the context of sensory discrimination tasks. Initial processing of payoff information strongly influences the starting point for the accumulation of sensory evidence, while exerting little if any effect on the rate of accumulation of sensory evidence.