Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 127(12): 2619-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273129

RESUMO

KEY MESSAGE: We show the application of association mapping and genomic selection for key breeding targets using a large panel of elite winter wheat varieties and a large volume of agronomic data. The heightening urgency to increase wheat production in line with the needs of a growing population, and in the face of climatic uncertainty, mean new approaches, including association mapping (AM) and genomic selection (GS) need to be validated and applied in wheat breeding. Key adaptive responses are the cornerstone of regional breeding. There is evidence that new ideotypes for long-standing traits such as flowering time may be required. In order to detect targets for future marker-assisted improvement and validate the practical application of GS for wheat breeding we genotyped 376 elite wheat varieties with 3,046 DArT, single nucleotide polymorphism and gene markers and measured seven traits in replicated yield trials over 2 years in France, Germany and the UK. The scale of the phenotyping exceeds the breadth of previous AM and GS studies in these key economic wheat production regions of Northern Europe. Mixed-linear modelling (MLM) detected significant marker-trait associations across and within regions. Genomic prediction using elastic net gave low to high prediction accuracies depending on the trait, and could be experimentally increased by modifying the constituents of the training population (TP). We also tested the use of differentially penalised regression to integrate candidate gene and genome-wide markers to predict traits, demonstrating the validity and simplicity of this approach. Overall, our results suggest that whilst AM offers potential for application in both research and breeding, GS represents an exciting opportunity to select key traits, and that optimisation of the TP is crucial to its successful implementation.


Assuntos
Mapeamento Cromossômico , Genômica/métodos , Triticum/genética , Cruzamento , França , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Genótipo , Alemanha , Desequilíbrio de Ligação , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reino Unido
2.
Front Plant Sci ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022985

RESUMO

Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.

3.
G3 (Bethesda) ; 5(11): 2257-66, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416667

RESUMO

The necrotrophic fungus Parastagonospora nodorum is an important pathogen of one of the world's most economically important cereal crops, wheat (Triticum aestivum L.). P. nodorum produces necrotrophic protein effectors that mediate host cell death, providing nutrients for continuation of the infection process. The recent discovery of pathogen effectors has revolutionized disease resistance breeding for necrotrophic diseases in crop species, allowing often complex genetic resistance mechanisms to be broken down into constituent parts. To date, three effectors have been identified in P. nodorum. Here we use the effector, SnTox1, to screen 642 progeny from an eight-parent multiparent advanced generation inter-cross (i.e., MAGIC) population, genotyped with a 90,000-feature single-nucleotide polymorphism array. The MAGIC founders showed a range of sensitivity to SnTox1, with transgressive segregation evident in the progeny. SnTox1 sensitivity showed high heritability, with quantitative trait locus analyses fine-mapping the Snn1 locus to the short arm of chromosome 1B. In addition, a previously undescribed SnTox1 sensitivity locus was identified on the long arm of chromosome 5A, termed here QSnn.niab-5A.1. The peak single-nucleotide polymorphism for the Snn1 locus was converted to the KASP genotyping platform, providing breeders and researchers a simple and cheap diagnostic marker for allelic state at Snn1.


Assuntos
Resistência à Doença/genética , Loci Gênicos , Hibridização Genética , Triticum/genética , Ascomicetos/patogenicidade , Cromossomos de Plantas/genética , Ligação Genética , Micotoxinas/toxicidade , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
4.
G3 (Bethesda) ; 4(9): 1603-10, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237112

RESUMO

MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.


Assuntos
Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Resistência à Doença , Flores/fisiologia , Frequência do Gene , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Plântula/genética , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA