Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(16): e2306453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032174

RESUMO

Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm-2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs.

2.
Small ; 20(22): e2306203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38128031

RESUMO

Semiconductor core/shell quantum dots (QDs) are considered promising building blocks to fabricate photoelectrochemical (PEC) cells for the direct conversion of solar energy into hydrogen (H2). However, the lattice mismatch between core and shell in such QDs results in undesirable defects and severe carrier recombination, limiting photo-induced carrier separation/transfer and solar-to-fuel conversion efficiency. Here, an interface engineering approach is explored to minimize the core-shell lattice mismatch in CdS/CdSexS1-x (x = 0.09-1) core/shell QDs (g-CSG). As a proof-of-concept, PEC cells based on g-CSG QDs yield a remarkable photocurrent density of 13.1 mA cm-2 under AM 1.5 G one-sun illumination (100 mW cm-2), which is ≈54.1% and ≈33.7% higher compared to that in CdS/CdSe0.5S0.5 (g-CSA) and CdS/CdSe QDs (g-CS), respectively. Theoretical calculations and carrier dynamics confirm more efficient carrier separation and charge transfer rate in g-CSG QDs with respect to g-CSA and g-CS QDs. These results are attributed to the minimization of the core-shell lattice mismatch by the cascade gradient shell in g-CSG QDs, which modifies carrier confinement potential and reduces interfacial defects. This work provides fundamental insights into the interface engineering of core/shell QDs and may open up new avenues to boost the performance of PEC cells for H2 evolution and other QDs-based optoelectronic devices.

3.
Small ; 19(30): e2300606, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035987

RESUMO

Solar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2 ) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In2 O3 /CuO p-n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm-2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm-2 ), which is approximately four times higher than that of the reference device based on only In2 O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p-n heterojunction that enhances the separation efficiency of photogenerated electron-hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF-derived In2 O3 /CuO p-n heterojunction composite is used to demonstrate a high-performance PEC device for hydrogen generation.

4.
Angew Chem Int Ed Engl ; 62(22): e202302979, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36988035

RESUMO

Heterogeneous photocatalysis is effective for the selective synthesis of value-added chemicals at lab-scale, yet falls short of requirements for mass production (low cost and user friendliness). Here we report the design and fabrication of a modular tubular flow system embedded with replaceable photocatalyst membranes for scalable photocatalytic C-C, C-N homocoupling and hydrogenation reactions, which can be operated in either circular and continuous flow mode with high performance. The photocatalyst membranes almost fully occupy the volume of the reactor, thus enabling optimal absorption of the incident light. Additionally, the porous structured photocatalyst membranes facilitate the mass transfer of the reactants to efficiently use the active sites, resulting in 0th -order reaction kinetics and a high space-time yield compared to the batch reaction system at practical application levels and prolonged reaction times.

5.
Angew Chem Int Ed Engl ; 62(51): e202313313, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37930876

RESUMO

Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT). A synergistic effect between the external electric field and the Fe/NC catalyst promotes the ammonia activation and the dehydrogenation of the generated imine intermediates and avoids the unwanted backwards reaction to aldehydes. This electric field enhanced ammoxidation system presents high efficiency and selectivity for the conversion of a series of aldehydes under mild conditions with high durability, rendering it an attractive process for the green synthesis of nitriles with fragile functional groups.

6.
Angew Chem Int Ed Engl ; 62(23): e202302994, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37013857

RESUMO

Environmental-friendly halogenation of C-H bonds using abundant, non-toxic halogen salts is in high demand in various chemical industries, yet the efficiency and selectivity of laboratory available protocols are far behind the conventional photolytic halogenation process which uses hazardous halogen sources. Here we report an FeX2 (X=Br, Cl) coupled semiconductor system for efficient, selective, and continuous photocatalytic halogenation using NaX as halogen source under mild conditions. Herein, FeX2 catalyzes the reduction of molecular oxygen and the consumption of generated oxygen radicals, thus boosting the generation of halogen radicals and elemental halogen for direct halogenation and indirect halogenation via the formation of FeX3 . Recycling of FeX2 and FeX3 during the photocatalytic process enables the halogenation of a wide range of hydrocarbons in a continuous flow, rendering it a promising method for applications.

7.
Small ; 18(24): e2201815, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35521950

RESUMO

Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.

8.
Small ; 18(8): e2103174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34914183

RESUMO

Plasmonic nanohybrids are promising photo energy conversion materials in photoelectronics and biomedicine, due to their unique surface plasmon resonance (SPR). Au and Cu2-x Sx nanostructures with strong SPR in the near-infrared (NIR) spectral region are classic plasmonic systems used to convert NIR photons into heat for photothermal therapy (PTT). The rational design of the Au/Cu2-x Sx nanohybrids is expected to induce better photothermal conversion; however, the construction of such hybrids via wet-chemistry methods with a well-controlled interfacial structure is still challenging. Here, the synthesis of an AuCu Star/Cu2-x Sx nanohybrid is reported, where the Cu2-x Sx components are selectively grown on the AuCu nanostar tips to form "caps". The spatial formation of the Cu2-x Sx caps on star tips is mainly governed by surfactant concentration, tip curvature, and experimental manipulation. The nanohybrids show low cytotoxicity and superior photothermal conversion efficiency, enabling robust PTT to kill cancer cells in the second NIR window. Numerical simulation reveals that the coupling of Cu2-x Sx on nanostar tips generates strong interfacial electric field, improving photothermal conversion. Moreover, the spatial separation structure favors the continuous flow of hot charge carriers to produce active radicals, further promoting the tumor treatment effect.


Assuntos
Neoplasias , Nanomedicina Teranóstica , Ouro/química , Humanos , Neoplasias/terapia , Fototerapia , Ressonância de Plasmônio de Superfície
9.
Chemistry ; 28(47): e202200809, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35657383

RESUMO

We use an on-surface synthesis approach to drive the homocoupling reaction of a simple dithiophenyl-functionalized precursor on Cu(111). The C-S activation reaction is initiated at low annealing temperature and yields unsaturated hydrocarbon chains interconnected in a fully conjugated reticulated network. High-resolution atomic force microscopy imaging reveals the opening of the thiophenyl rings and the presence of trans- and cis-oligoacetylene chains as well as pentalene units. The chemical transformations were studied by C 1s and S 2p core level photoemission spectroscopy and supported by theoretical calculations. At higher annealing temperature, additional cyclization reactions take place, leading to the formation of small graphene flakes.

10.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35921794

RESUMO

We report the design and one-pot synthesis of Ag-doped BiVO4embedded in reduced graphene oxide (BiVO4:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes. Photocatalytic degradation efficiencies of 61% and 70% were achieved after 5 h of visible light irradiation using BiVO4:Ag/rGO@PVDF and BiVO4:Ag/rGO@PI (PEG-modified) systems, respectively. The beneficial photocatalytic performance of the BiVO4:Ag/rGO@PI (PEG-modified) membrane is explained by the higher hydrophilicity due to the PEG modification of the PI membrane. This work may provide a rational and effective strategy to fabricate highly efficient photocatalytic nanocomposite membranes with well-contacted interfaces for environmental purification.

11.
Small ; 17(41): e2103044, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34477325

RESUMO

On-surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently-halogenated para-phenylenes is identified, where the self-assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction. The topotactic mechanism is the result of the structure of the iodine on Cu(110), which controls the orientation of the OM reactants and intermediates to be the same as the final polymer chains. Temperature-programmed X-ray photoelectron spectroscopy and kinetic modeling reflect the differences in the polymerization regimes, and the effects of the OM chain alignments and halogens are disentangled by Nudged Elastic Band calculations. It is found that the repulsion or attraction between chains and halogens drive the polymerization to be either diffusive or topotactic. These results provide detailed insights into on-surface reaction mechanisms and prove the possibility of harnessing topotactic reactions in surface-confined Ullmann polymerization.

12.
Chem Soc Rev ; 49(7): 2020-2038, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141466

RESUMO

Two-dimensional (2D) nanomaterials, such as graphene and single layer covalent organic frameworks (sCOFs) are being widely studied due to their unusual structure/property relationships. sCOFs typically feature atomic thickness, intrinsic nanoscale porosity and a crystalline lattice. Compared to other organic 2D materials, sCOFs exhibit major advantages including topological designation and constitutional tunability. This review describes the state of the art of surface-confined sCOFs, emphasizing reticular design, synthesis approaches, and key challenges related to improving quality and exploring applications.

13.
Angew Chem Int Ed Engl ; 60(32): 17435-17439, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34080274

RESUMO

On-surface synthesis (OSS) involving relatively high energy barriers remains challenging due to a typical dilemma: firm molecular anchor is required to prevent molecular desorption upon the reaction, whereas sufficient lateral mobility is crucial for subsequent coupling and assembly. By locking the molecular precursors on the substrate then unlocking them during the reaction, we present a strategy to address this challenge. High-yield synthesis based on well-defined decarboxylation, intermediate transition, and hexamerization is demonstrated, resulting in an extended and ordered network exclusively composed of the newly synthesized macrocyclic compound. Thanks to the steric hindrance of its maleimide group, we attain a preferential selection of the coupling. This work unlocks a promising path to enrich the reaction types and improve the coupling selectivity hence the structual homogeneity of the final product for OSS.

14.
Small ; 16(28): e2000804, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468691

RESUMO

Colloidal quantum dots (QDs) are a fascinating class of semiconducting nanocrystals, thanks to their optical properties tunable through size and composition, and simple synthesis methods. Recently, colloidal double-emission QDs have been successfully applied as competitive optical temperature sensors, since they exhibit structure-tunable double emission, temperature-dependent photoluminescence, high quantum yield, and excellent photostability. Until now, QDs have been used as nanothermometers for in vivo biological thermal imaging, and thermal mapping in complex environments at the sub-microscale to nanoscale range. In this Review, recent progress for QD-based nanothermometers is highlighted and perspectives for future work are described.

15.
Small ; 16(35): e2002393, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32761784

RESUMO

While surface-confined Ullmann-type coupling has been widely investigated for its potential to produce π-conjugated polymers with unique properties, the pathway of this reaction in the presence of adsorbed oxygen has yet to be explored. Here, the effect of oxygen adsorption between different steps of the polymerization reaction is studied, revealing an unexpected transformation of the 1D organometallic (OM) chains to 2D OM networks by annealing, rather than the 1D polymer obtained on pristine surfaces. Characterization by scanning tunneling microscopy and X-ray photoelectron spectroscopy indicates that the networks consist of OM segments stabilized by chemisorbed oxygen at the vertices of the segments, as supported by density functional theory calculations. Hexagonal 2D OM networks with different sizes on Cu(111) can be created using precursors with different length, either 4,4″-dibromo-p-terphenyl or 1,4-dibromobenzene (dBB), and square networks are obtained from dBB on Cu(100). The control over size and symmetry illustrates a versatile surface patterning technique, with potential applications in confined reactions and host-guest chemistry.

16.
J Chem Phys ; 153(8): 084705, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872869

RESUMO

Ferroelectric materials may be used as effective photoelectrocatalysts for water splitting due to enhanced charge carrier separation driven by their spontaneous polarization induced internal electric field. Compared to other ferroelectric materials, BiFeO3 exhibits a high catalytic efficiency due to its comparatively smaller bandgap, which enables light absorption from a large part of the solar spectrum and its higher bulk ferroelectric polarization. Here, we compare the photoelectrochemical properties of three different BiFeO3 morphologies, namely, nanofibers, nanowebs, and thin films synthesized via electrospinning, directly on fluorine-doped tin oxide (FTO) coated glass substrates. A significant photocathodic current in the range from -86.2 to -56.5 µA cm-2 at -0.4 V bias (vs Ag/AgCl) has been recorded for all three morphologies in 0.1M Na2SO4 aqueous solution (pH = 6.8). Among these morphologies, BiFeO3 nanofibers exhibit higher efficiency because of their larger surface area and improved charge separation resulting from rapid diffusion of photoinduced charge carriers along the axis of the nanofiber. In the case of BiFeO3 nanofibers, we obtained the highest photocurrent density of -86.2 µA/cm2 at -0.4 V bias (vs Ag/AgCl electrode) and an onset potential of 0.22 V. We also observed that the onset potential of the photocathodic current can be increased by applying a positive polarization voltage, which leads to favorable bending of band edges at the electrode/electrolyte interface resulting in increased charge carrier separation.

17.
Nano Lett ; 19(11): 7827-7835, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31577446

RESUMO

Low utilization of active metallic sodium (Na) and uncontrollable growth of Na dendrites remain significant challenges for high-performance Na metal batteries, which are limited to inefficient Na utilization (<1%) and shallow cycling conditions (0.25-1.0 mAh cm-2). In this work, a kind of Na metal anode with record-high utilization and long-term cycling stability is reported, using carbon-substrate-supported nitrogen-anchored zinc (Zn) single atoms as a current collector. Single Zn atom sites which serve as a strong "magnet" for Na ions, can guide the metallic Na uniform nucleation and free from dendrite-induced short circuit. The nucleation overpotential of our strategy is essentially zero, where most of the reported modified substrates were greatly exceed 20 mV. Specifically, the Na anodes exhibit a high Na stripping/plating Coulombic efficiency with 99.8% over 350 cycles and a stable voltage response with small voltage hysteresis after cycling 1000 h. The full cell exhibits high Na utilization up to 100% and superior long-term cycling stability for more than 1000 cycles with excellent capacity retention. In terms of lifetime and Na utilization, the Na metal anodes based on our strategy significantly outperforms the reported state-of-the-art Na metal anodes. Moreover, this affords new insights into the controllable Na nucleation behavior and high Na utilization and sheds fresh light on atomic level design of an electrode for Na metal anodes.

18.
Small ; 15(45): e1903294, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513362

RESUMO

The surface-induced anchoring effect is a well-developed technique to control the growth of liquid crystals (LCs). Nevertheless, a defined nanometer-scale template has never been used to induce the anchored growth of LCs with molecular building units. Scanning tunneling microscopy results at the solid/liquid interface reveal that a 2D covalent organic framework (COF-1) can offer an anchoring effect to template C70 molecules into forming several LC mesophases, which cannot be obtained under other conditions. Through comparison with the C60 system, a stepwise breakdown in ordering of C70 LC is observed. The process is described in terms of the effects of molecular anisotropy on the epitaxial growth of molecular crystals. The results suggest that using a surface-confined template to anchor the initial layer of LC molecules can be a modular and potentially broadly applicable approach for organizing molecular mesogens into LCs.

19.
Acc Chem Res ; 51(3): 609-618, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29260851

RESUMO

Semiconductor nanocrystals exhibit size-tunable absorption and emission ranging from the ultraviolet (UV) to the near-infrared (NIR) spectral range, high absorption coefficient, and high photoluminescence quantum yield. Effective surface passivation of these so-called quantum dots (QDs) may be achieved by growing a shell of another semiconductor material. The resulting core/shell QDs can be considered as a model system to study and optimize structure/property relations. A special case consists in growing thick shells (1.5 up to few tens of nanometers) to produce "giant" QDs (g-QDs). Tailoring the chemical composition and structure of CdSe/CdS and PbS/CdS g-QDs is a promising approach to widen the spectral separation of absorption and emission spectra (i.e., the Stokes shift), improve the isolation of photogenerated carriers from surface defects and enhance charge carrier lifetime and mobility. However, most stable systems are limited by a thick CdS shell, which strongly absorbs radiation below 500 nm, covering the UV and part of the visible range. Modification of the interfacial region between the core and shell of g-QDs or tuning their doping with narrow band gap semiconductors are effective approaches to circumvent this challenge. In addition, the synthesis of g-QDs composed of environmentally friendly elements (e.g., CuInSe2/CuInS2) represents an alternative to extend their absorption into the NIR range. Additionally, the band gap and band alignment of g-QDs can be engineered by proper selection of the constituents according to their band edge positions and by tuning their stoichiometry during wet chemical synthesis. In most cases, the quasi-type II localization regime of electrons and holes is achieved. In this type of g-QDs, electrons can leak into the shell region, while the holes remain confined within the core region. This electron-hole spatial distribution is advantageous for optoelectronic devices, resulting in efficient electron-hole separation while maintaining good stability. This Account provides an overview of emerging engineering strategies that can be adopted to optimize structure/property relations in colloidal g-QDs for efficient photon management or charge separation/transfer. In particular, we focus on our recent contributions to this rapidly expanding field of research. We summarize the design and synthesis of a variety of colloidal g-QDs with the aim of tuning the optical properties, such as absorption/emission in a wide region of the solar spectrum, which allows enlargement of their Stokes shift. We also describe the band alignment within these systems, charge carrier dynamics, and charge transfer from g-QDs into semiconducting oxides. We show how these tailored g-QDs may be used as active components in luminescent solar concentrators, photoelectrochemical cells for hydrogen generation, QD-sensitized solar cells and optical nanothermometers. In each case, we aim at providing insights on structure/property relationships and on how to optimize them toward improving device performance. Finally, we describe perspectives for future work, sketching new directions and opportunities in this field of research at the intersection between chemistry, physics, materials science and engineering.

20.
Chem Soc Rev ; 47(15): 5866-5890, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29915833

RESUMO

Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors, are suitable for applications in high-efficiency and cost-effective photovoltaics (PVs), and provide adaptability to the needs of architects for building-integrated PVs, which makes them an attractive option for transforming buildings into transparent or non-transparent electricity generators. Compared with traditional organic dyes, colloidal semiconducting quantum dots (QDs) are excellent candidates as emitters for LSCs because they exhibit wide size/shape/composition-tunable absorption spectra ranging from ultraviolet to near infrared, significantly overlapping with the solar spectrum. They also feature narrow emission spectra, high photoluminescence quantum yields, high absorption coefficients, solution processability and good photostability. Most importantly, QDs can be engineered to provide a minimal overlap between absorption and emission spectra, which is key to the realization of large-area LSCs with largely suppressed reabsorption energy losses. In this review article, we will first present and discuss the working principle of LSCs, the synthesis of colloidal QDs using wet-chemistry approaches, the optical properties of QDs, their band alignment and the intrinsic relationship between the band energy structure and optical properties of QDs. We focus on emerging architectures, such as core/shell QDs. We then highlight recent progress in QD-based LSCs and their anticipated applications. We conclude this review article with the major challenges and perspectives of LSCs in future commercial technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA