Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144667

RESUMO

(1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.


Assuntos
Cobre , Flumazenil , Cobre/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ácido gama-Aminobutírico
2.
Bioconjug Chem ; 32(7): 1192-1203, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33788556

RESUMO

Radiolabeled derivatives of Tyr3-octreotide and Tyr3-octreotate, synthetic analogues of the peptide hormone somatostatin, can be used for positron emission tomography (PET) imaging of somatostatin receptor expression in neuroendocrine tumors. In this work, a squaramide ester derivative of desferrioxamine B (H3DFOSq) was used attach either Tyr3-octreotide or Tyr3-octreotate to the metal binding ligand to give H3DFOSq-TIDE and H3DFOSq-TATE. These new peptide-H3DFOSq conjugates form stable complexes with either of the positron-emitting radionuclides gallium-68 (t1/2 = 68 min) or zirconium-89 (t1/2 = 3.3 days). The new complexes were evaluated in an AR42J xenograft model that has endogenous expression of SSTR2. All four agents displayed good tumor uptake and produced high-quality PET images. For both radionuclides, the complexes formed with H3DFOSq-TATE performed better, with higher tumor uptake and retention than the complexes formed with H3DFOSq-TIDE. The versatile ligands presented here can be radiolabeled with either gallium-68 or zirconium-89 at room temperature. The long radioactive half-life of zirconium-89 makes distribution of pre-synthesized tracers produced to certified standards feasible and could increase the number of clinical centers that can perform diagnostic PET imaging of neuroendocrine tumors.


Assuntos
Desferroxamina/química , Radioisótopos de Gálio/química , Octreotida/química , Quinina/análogos & derivados , Radioisótopos/química , Somatostatina/metabolismo , Zircônio/química , Animais , Camundongos , Quinina/química
3.
Inorg Chem ; 59(16): 11658-11669, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799487

RESUMO

Alzheimer's disease is characterized by the presence of extracellular amyloid-ß plaques. Positron emission tomography (PET) imaging with tracers radiolabeled with positron-emitting radionuclides that bind to amyloid-ß plaques can assist in the diagnosis of Alzheimer's disease. With the goal of designing new imaging agents radiolabeled with positron-emitting copper-64 radionuclides that bind to amyloid-ß plaques, a family of bis(thiosemicarbazone) ligands with appended substituted stilbenyl functional groups has been prepared. The ligands form charge-neutral and stable complexes with copper(II). The new ligands can be radiolabeled with copper-64 at room temperature. Two lead complexes were demonstrated to bind to amyloid-ß plaques present in post-mortem brain tissue from subjects with clinically diagnosed Alzheimer's disease and crossed the blood-brain barrier in mice. The work presented here provides strategies to prepare compounds with radionuclides of copper that can be used for targeted brain PET imaging.


Assuntos
Peptídeos beta-Amiloides/química , Complexos de Coordenação/química , Cobre/química , Placa Amiloide/química , Estilbenos/química , Tiossemicarbazonas/química , Cristalografia por Raios X , Estrutura Molecular , Ligação Proteica
4.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287202

RESUMO

Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, ß-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.


Assuntos
Fluoretos/química , Radioisótopos de Flúor/química , Distribuição Tecidual/fisiologia , Tocotrienóis/química , Tocotrienóis/farmacocinética , Vitamina E/química , Vitamina E/farmacocinética , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Linhagem Celular Tumoral , Feminino , Fluoretos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Humanos , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Oxirredução , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/metabolismo , gama-Tocoferol/química , gama-Tocoferol/farmacocinética
5.
Inorg Chem ; 58(7): 4540-4552, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869878

RESUMO

The synthesis of new bis(thiosemicarbazonato)copper(II) complexes featuring polyamine substituents via selective transamination reactions is presented. Polyamines of different lengths, with different ionizable substituent groups, were used to modify and adjust the hydrophilic/lipophilic balance of the copper complexes. The new analogues were radiolabeled with copper-64 and their lipophilicities estimated using distribution coefficients. The cell uptake of the new polyamine complexes was investigated with preliminary in vitro biological studies using a neuroblastoma cancer cell line. The in vivo biodistribution of three of the new analogues was investigated in vivo in mice using positron-emission tomography imaging, and one of the new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One complex, with a pendent ( N, N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of [64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic brain imaging of tumors and neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Complexos de Coordenação/farmacocinética , Radioisótopos de Cobre/química , Poliaminas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tiossemicarbazonas/farmacocinética , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Poliaminas/síntese química , Poliaminas/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Distribuição Tecidual
6.
Inorg Chem ; 58(5): 3382-3395, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30785268

RESUMO

Amyloid-ß plaques, consisting of aggregated amyloid-ß peptides, are one of the pathological hallmarks of Alzheimer's disease. Copper complexes formed using positron-emitting copper radionuclides that cross the blood-brain barrier and bind to specific molecular targets offer the possibility of noninvasive diagnostic imaging using positron emission tomography. New thiosemicarbazone-pyridylhydrazone based ligands that incorporate pyridyl-benzofuran functional groups designed to bind amyloid-ß plaques have been synthesized. The ligands form stable complexes with copper(II) ( Kd = 10-18 M) and can be radiolabeled with copper-64 at room temperature. Subtle changes to the periphery of the ligand backbone alter the metabolic stability of the complexes in mouse and human liver microsomes, and influenced the ability of the complexes to cross the blood-brain barrier in mice. A lead complex was selected based on possessing the best metabolic stability and brain uptake in mice. Synthesis of this lead complex with isotopically enriched copper-65 allowed us to show that the complex bound to amyloid-ß plaques present in post-mortem human brain tissue using laser ablation-inductively coupled plasma-mass spectrometry. This work provides insight into strategies to target metal complexes to amyloid-ß plaques, and how small modifications to ligands can dramatically alter the metabolic stability of metal complexes as well as their ability to cross the blood-brain barrier.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Complexos de Coordenação/química , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Radioisótopos de Cobre , Humanos , Ligantes , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 58(42): 14991-14994, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31437347

RESUMO

Molecules containing lysine-ureido-glutamate functional groups bind to the active site of prostate specific membrane antigen, which is overexpressed in prostate cancer. To prepare copper radiopharmaceuticals for the diagnosis and therapy of prostate cancer, macrobicyclic sarcophagine ligands tethered to either one or two lysine-ureido-glutamate functional groups through an appropriate linker have been prepared. Sarcophagine ligands can be readily radiolabeled with positron-emitting copper-64 at room temperature. The bivalent agent, in which two targeting groups are tethered to a single copper complex, dramatically outperforms the monomeric agent with respect to tumor uptake and retention. The high tumor uptake, low background, and prolonged tumor retention, even at 24 hours post injection, suggest the bivalent agent is a promising diagnostic for prostate cancer and could be used for prospective dosimetry for therapy with a copper-67 variant.


Assuntos
Radioisótopos de Cobre/química , Dipeptídeos/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamatos/química , Neoplasias da Próstata , Compostos Radiofarmacêuticos/química , Animais , Antígenos de Superfície , Sítios de Ligação , Linhagem Celular Tumoral , Radioisótopos de Cobre/metabolismo , Glutamatos/farmacocinética , Humanos , Lisina/análogos & derivados , Lisina/química , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Ligação Proteica , Compostos Radiofarmacêuticos/farmacocinética , Nanomedicina Teranóstica , Distribuição Tecidual , Ureia/análogos & derivados , Ureia/química
8.
J Labelled Comp Radiopharm ; 61(2): 61-67, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143364

RESUMO

Radiolabelled peptides are vital tools used in positron emission tomography imaging for the diagnosis of disease, drug discovery, and biomedical research. Peptides are typically labeled through conjugation to a radiolabelled prosthetic group, which usually necessitates complex, multi-step procedures, especially for fluorine-18 labeled peptides. Herein, we describe the automated synthesis and formulation of 2-[18 F]fluoropropionate labeled RGD-peptides through use of the iPHASE Flexlab as an effective dual-stage radiochemical synthesis module. The fully automated preparation of the monomeric RGD-peptides, [18 F]FP-GalactoRGD and [18 F]FP-c(RGDy(SO3 )K), was accomplished in under 90 minutes with n.d.c. radiochemical yields ca. 7% from fluoride. Similarly, the automated preparation of the dimeric RGD-peptides, [18 F]F-PRGD2 and [18 F]FP-E(RGDy(SO3 )K)2 , was accomplished in under 105 minutes with n.d.c. yields ca. 4% from fluoride.


Assuntos
Radioisótopos de Flúor/química , Oligopeptídeos/química , Compostos Radiofarmacêuticos/síntese química , Azidas/química
9.
Bioconjug Chem ; 28(2): 481-495, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27966893

RESUMO

Tris(hydroxypyridinone) chelators conjugated to peptides can rapidly complex the positron-emitting isotope gallium-68 (68Ga) under mild conditions, and the resulting radiotracers can delineate peptide receptor expression at sites of diseased tissue in vivo. We have synthesized a dendritic bifunctional chelator containing nine 1,6-dimethyl-3-hydroxypyridin-4-one groups (SCN-HP9) that can coordinate up to three Ga3+ ions. This derivative has been conjugated to a trimeric peptide (RGD3) containing three peptide groups that target the αvß3 integrin receptor. The resulting dendritic compound, HP9-RGD3, can be radiolabeled in 97% radiochemical yield at a 3-fold higher specific activity than its homologues HP3-RGD and HP3-RGD3 that contain only a single metal binding site. PET scanning and biodistribution studies show that [68Ga(HP9-RGD3)] demonstrates higher receptor-mediated tumor uptake in animals bearing U87MG tumors that overexpress αvß3 integrin than [68Ga(HP3-RGD)] and [68Ga(HP3-RGD3)]. However, concomitant nontarget organ retention of [68Ga(HP9-RGD3)] results in low tumor to nontarget organ contrast in PET images. On the other hand, the trimeric peptide homologue containing a single tris(hydroxypyridinone) chelator, [68Ga(HP3-RGD3)], clears nontarget organs and exhibits receptor-mediated uptake in mice bearing tumors and in mice with induced rheumatoid arthritis. PET imaging with [68Ga(HP3-RGD3)] enables clear delineation of αvß3 integrin receptor expression in vivo.


Assuntos
Quelantes/química , Radioisótopos de Gálio/química , Integrina alfaVbeta3/análise , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Animais , Artrite Reumatoide/diagnóstico por imagem , Quelantes/farmacocinética , Feminino , Radioisótopos de Gálio/farmacocinética , Articulações/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico por imagem , Oligopeptídeos/farmacocinética , Piridinas/farmacocinética , Distribuição Tecidual
10.
Mol Pharm ; 14(4): 1169-1180, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28191977

RESUMO

Control of the biodistribution of radiolabeled peptides has proven to be a major challenge in their application as imaging agents for positron emission tomography (PET). Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[18F]fluoropropionate, and the biodistribution of the radiolabeled peptides was compared with that of their nonsulfonated, clinically relevant counterparts, [18F]GalactoRGD and [18F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da toward the MW, compared with 189 Da for both the "Galacto" and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabeled peptides.


Assuntos
Radioisótopos de Flúor/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Tirosina/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Integrina alfaVbeta3/metabolismo , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Nitrofenóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo
11.
Bioconjug Chem ; 27(2): 309-18, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26286399

RESUMO

Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with (68)Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced (68)Ga(3+) in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60-80 MBq nmol(-1). Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new (68)Ga(3+)-labeled THP peptide conjugates retain affinity for the αvß3 integrin receptor, clear within 1-2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of (68)Ga biomolecules under mild conditions suitable for peptides and proteins.


Assuntos
Quelantes/química , Radioisótopos de Gálio/química , Isotiocianatos/química , Tomografia por Emissão de Pósitrons , Piridonas/química , Animais , Quelantes/metabolismo , Quelantes/farmacocinética , Radioisótopos de Gálio/metabolismo , Radioisótopos de Gálio/farmacocinética , Integrina alfaVbeta3/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/diagnóstico , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridonas/metabolismo , Piridonas/farmacocinética , Distribuição Tecidual
12.
EJNMMI Radiopharm Chem ; 9(1): 39, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717578

RESUMO

BACKGROUND: Automated [89Zr]Zr-radiolabeling processes have the potential to streamline the production of [89Zr]Zr-labelled PET imaging agents. Most radiolabeling protocols use [89Zr][Zr(ox)4]4- as the starting material and oxalate is removed after radiolabeling. In some instances, radiolabeling with [89Zr]ZrCl4 as starting material gives better radiochemical yields at lower reaction temperatures. In this work, a fully-automated process for production of [89Zr]ZrCl4 is reported and its use for the synthesis of [89Zr]ZrDFOSq-bisPhPSMA and [89Zr]ZrDFOSq-TATE. RESULTS: A simple automated process for the isolation of [89Zr]ZrCl4 by trapping [89Zr][Zr(ox)4]4- on a bicarbonate-activated strong anion exchange cartridge followed by elution with 0.1 M HCl in 1 M NaCl was developed. [89Zr]ZrCl4 was routinely recovered from [89Zr][Zr(ox)4]4- in > 95% yield in mildly acidic solution of 0.1 M HCl in 1 M NaCl using a fully-automated process. The [89Zr]ZrCl4 was neutralized with sodium acetate buffer (0.25 M) removing the requirement for cumbersome manual neutralization with strong base. The mixture of [89Zr]ZrCl4 was used for direct automated radiolabeling reactions to produce [89Zr]Zr-DFOSquaramide-bisPhPSMA and [89Zr]ZrDFOSquaramide-TATE in 80-90% over all RCY in > 95% RCP. CONCLUSIONS: This method for the production of [89Zr]ZrCl4 does not require removal of HCl by evaporation making this process relatively fast and efficient. The fully automated procedures for the production of [89Zr]ZrCl4 and its use in radiolabeling are well suited to support the centralized and standardized manufacture of multiple dose preparations of zirconium-89 based radiopharmaceuticals.

13.
Theranostics ; 14(5): 1815-1828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505611

RESUMO

Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.


Assuntos
Radioisótopos de Gálio , Receptor de Colecistocinina B , Camundongos , Animais , Receptor de Colecistocinina B/metabolismo , Radioisótopos de Gálio/química , Medicina de Precisão , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Peptídeos/química
14.
J Am Chem Soc ; 135(43): 16120-32, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24070589

RESUMO

One of the pathological hallmarks of Alzheimer's disease is the presence of amyloid-ß plaques in the brain and the major constituent of these plaques is aggregated amyloid-ß peptide. New thiosemicarbazone-pyridylhydrazine based ligands that incorporate functional groups designed to bind amyloid-ß plaques have been synthesized. The new ligands form stable four coordinate complexes with a positron-emitting radioactive isotope of copper, (64)Cu. Two of the new Cu(II) complexes include a functionalized styrylpyridine group and these complexes bind to amyloid-ß plaques in samples of post-mortem human brain tissue. Strategies to increase brain uptake by functional group manipulation have led to a (64)Cu complex that effectively crosses the blood-brain barrier in wild-type mice. The new complexes described in this manuscript provide insight into strategies to deliver metal complexes to amyloid-ß plaques.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/química , Cobre/química , Placa Amiloide/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Animais , Cromatografia Líquida de Alta Pressão , Radioisótopos de Cobre/química , Cristalografia por Raios X , Cães , Eletroquímica , Humanos , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Distribuição Tecidual
15.
J Labelled Comp Radiopharm ; 56(14): 726-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24339012

RESUMO

The versatile (18) F-labeled prosthetic group, 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP), was synthesized in a single step in 45 min from 4-nitrophenyl 2-bromopropionate, with a decay corrected radiochemical yield of 26.2% ± 2.2%. Employing this improved synthesis of [(18) F]NFP, [(18) F]GalactoRGD - the current 'gold standard' tracer for imaging the expression of αV ß3 integrin - was prepared with high specific activity in 90 min and 20% decay corrected radiochemical yield from [(18) F]fluoride.


Assuntos
Azidas/síntese química , Radioisótopos de Flúor/química , Marcação por Isótopo/métodos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Peptídeos/síntese química
16.
J Med Chem ; 66(15): 10289-10303, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493526

RESUMO

Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.


Assuntos
Neoplasias , Receptor de Colecistocinina B , Receptor de Colecistocinina B/metabolismo , Medicina de Precisão , Distribuição Tecidual , Linhagem Celular Tumoral , Peptídeos/química , Neoplasias/tratamento farmacológico
17.
Nucl Med Biol ; 120-121: 108351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224789

RESUMO

OBJECTIVES: 89Zr-labelled proteins are gaining importance in clinical research in a variety of diseases. To date, no clinical study has been reported that utilizes an automated approach for radiosynthesis of 89Zr-labelled radiopharmaceuticals. We aim to develop an automated method for the clinical production of 89Zr-labelled proteins and apply this method to Durvalumab, a monoclonal antibody targeting PD-L1 immune-checkpoint protein. PD-L1 expression is poorly understood and can be up-regulated over the course of chemo- and radiotherapy treatment. The ImmunoPET multicentre study aims to examine the dynamics of PD-L1 expression via 89Zr-Durvalumab PET imaging before, during, and after chemoradiotherapy. The developed automated technique will enable reproducible clinical production of [89Zr]Zr-DFOSq-Durvalumab for this study at three different sites. METHODS: Conjugation of Durvalumab to H3DFOSqOEt was optimized for optimal chelator-to-antibody ratio. Automated radiolabelling of H3DFOSq-Durvalumab with zirconium-89 was optimized on the disposable cassette based iPHASE technologies MultiSyn radiosynthesizer using a modified cassette. Activity losses were tracked using a dose calibrator and minimized by optimizing fluid transfers, reaction buffer, antibody formulation additives and pH. The biological profile of the radiolabelled antibody was confirmed in vivo in PD-L1+ (HCC827) and PD-L1- (A549) murine xenografts. Clinical process validation and quality control were performed at three separate study sites to satisfy clinical release criteria. RESULTS: H3DFOSq-Durvalumab with an average CAR of 3.02 was obtained. Radiolabelling kinetics in succinate (20 mM, pH 6) were significantly faster when compared to HEPES (0.5 M, pH 7.2) with >90 % conversion observed after 15 min. Residual radioactivity in the 89Zr isotope vial was reduced from 24 % to 0.44 % ± 0.18 % (n = 7) and losses in the reactor vial were reduced from 36 % ± 6 % (n = 4) to 0.82 % ± 0.75 % (n = 4) by including a surfactant in the reaction and formulation buffers. Overall process yield was 75 % ± 6 % (n = 5) and process time was 40 min. Typically, 165 MBq of [89Zr]Zr-DFOSq-Durvalumab with an apparent specific activity of 315 MBq/mg ± 34 MBq/mg (EOS) was obtained in a volume of 3.0 mL. At end-of-synthesis (EOS), radiochemical purity and protein integrity were always >99 % and >96 %, respectively, and dropped to 98 % and 65 % after incubation in human serum for 7 days at 37 °C. Immunoreactive fraction in HEK293/PD-L1 cells was 83.3 ± 9.0 (EOS). Preclinical in vivo data at 144 h p.i. showed excellent SUVmax in PD-L1+ tumour (8.32 ± 0.59) with a tumour-background ratio of 17.17 ± 3.96. [89Zr]Zr-DFOSq-Durvalumab passed all clinical release criteria at each study site and was deemed suitable for administration in a multicentre imaging trial. CONCLUSION: Fully automated production of [89Zr]Zr-DFOSq-Durvalumab for clinical use was achieved with minimal exposure to the operator. The cassette-based approach allows for consecutive productions on the same day and offers an alternative to currently used manual protocols. The method should be broadly applicable to other proteins and has the potential for clinical impact considering the growing number of clinical trials investigating 89Zr-labelled antibodies.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Células HEK293 , Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Zircônio
18.
Eur J Nucl Med Mol Imaging ; 39(4): 703-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22160176

RESUMO

PURPOSE: The imaging potential of a new (18)F-labelled methionine derivative, S-(3-[(18)F]fluoropropyl)-D-homocysteine ((18)F-D-FPHCys), and its selectivity for amino acid transporter subtypes were investigated in vitro and by imaging of human tumour xenografts. METHODS: Expression of members of the system L (LAT isoforms 1-4 and 4F2hc) and ASCT (ASCT isoforms 1 and 2) amino acid transporter subclasses were assessed by quantitative real-time PCR in four human tumour models, including A431 squamous cell carcinoma, PC3 prostate cancer, and Colo 205 and HT-29 colorectal cancer lines. The first investigations for the characterization of (18)F-D-FPHCys were in vitro uptake studies by comparing it with [1-(14)C]-L-methionine ((14)C-MET) and in vivo by PET imaging. In addition, the specific involvement of LAT1 transporters in (18)F-D-FPHCys accumulation was tested by silencing LAT1 mRNA transcription with siRNAs. To determine the proliferative activity in tumour xenografts ex vivo, Ki-67 staining was used as a biomarker. RESULTS: A431 cells showed the highest (18)F-D-FPHCys uptake in vitro and in vivo followed by Colo 205, PC3 and HT-29. A similar pattern of retention was observed with (14)C-MET. (18)F-D-FPHCys retention was strongly correlated with LAT1 expression both in vitro (R(2) = 0.85) and in vivo (R(2) = 0.99). Downregulation of LAT1 by siRNA inhibited (18)F-D-FPHCys uptake, demonstrating a clear dependence on this transporter for tumour uptake. Furthermore, (18)F-D-FPHCys accumulation mirrored cellular proliferation. CONCLUSION: The favourable properties of (18)F-D-FPHCys make this tracer a promising imaging probe for detection of tumours as well as for the noninvasive evaluation and monitoring of tumour growth.


Assuntos
Homocisteína/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação da Expressão Gênica , Homocisteína/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Traçadores Radioativos
19.
NPJ Precis Oncol ; 6(1): 24, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393508

RESUMO

Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.

20.
BMJ Open ; 12(11): e056708, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400733

RESUMO

BACKGROUND: ImmunoPET is a multicentre, single arm, phase 0-1 study that aims to establish if 89Zr-durvalumab PET/CT can be used to interrogate the expression of PD-L1 in larger, multicentre clinical trials. METHODS: The phase 0 study recruited 5 PD-L1+ patients with metastatic non-small cell lung cancer (NSCLC). Patients received 60MBq/70 kg 89Zr-durva up to a maximum of 74 MBq, with scan acquisition at days 0, 1, 3 or 5±1 day. Data on (1) Percentage of injected 89Zr-durva dose found in organs of interest (2) Absorbed organ doses (µSv/MBq of administered 89Zr-durva) and (3) whole-body dose expressed as mSv/100MBq of administered dose was collected to characterise biodistribution.The phase 1 study will recruit 20 patients undergoing concurrent chemoradiotherapy for stage III NSCLC. Patients will have 89Zr-durva and FDG-PET/CT before, during and after chemoradiation. In order to establish the feasibility of 89Zr-durva PET/CT for larger multicentre trials, we will collect both imaging and toxicity data. Feasibility will be deemed to have been met if more than 80% of patients are able complete all trial requirements with no significant toxicity. ETHICS AND DISSEMINATION: This phase 0 study has ethics approval (HREC/65450/PMCC 20/100) and is registered on the Australian Clinical Trials Network (ACTRN12621000171819). The protocol, technical and clinical data will be disseminated by conference presentations and publications. Any modifications to the protocol will be formally documented by administrative letters and must be submitted to the approving HREC for review and approval. TRIAL REGISTRATION NUMBER: Australian Clinical Trials Network ACTRN12621000171819.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Austrália , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia , Imunoterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA