Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(24): 5902-5915.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752731

RESUMO

Increasing evidence indicates that the brain regulates peripheral immunity, yet whether and how the brain represents the state of the immune system remains unclear. Here, we show that the brain's insular cortex (InsCtx) stores immune-related information. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Thus, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.


Assuntos
Imunidade , Córtex Insular/fisiologia , Neurônios/fisiologia , Animais , Colite/induzido quimicamente , Colite/complicações , Colite/imunologia , Colo/patologia , Sulfato de Dextrana , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/patologia , Peritonite/complicações , Peritonite/imunologia , Peritonite/patologia , Sinapses/metabolismo , Zimosan
3.
Nature ; 586(7829): 412-416, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029011

RESUMO

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hipocampo/citologia , Consolidação da Memória , Neurônios/metabolismo , Somatostatina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/genética , Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Memória de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Plasticidade Neuronal , Parvalbuminas , Fosforilação , Células Piramidais/fisiologia , Transmissão Sináptica
4.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015848

RESUMO

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Assuntos
Astrócitos , Potenciação de Longa Duração , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Hipocampo/fisiologia , Biossíntese de Proteínas , Região CA1 Hipocampal , Memória de Longo Prazo/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876772

RESUMO

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3caH1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.


Assuntos
Epilepsia/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Neurônios/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Iniciação em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neurônios/fisiologia , Parvalbuminas/genética , Parvalbuminas/metabolismo
6.
Nucleic Acids Res ; 48(6): e32, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974573

RESUMO

In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Neurônios/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Animais , Compartimento Celular , Células Cultivadas , Dendritos/metabolismo , Corantes Fluorescentes/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
7.
J Neurosci ; 40(45): 8698-8714, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046554

RESUMO

The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases.SIGNIFICANCE STATEMENT One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.


Assuntos
Região CA1 Hipocampal/fisiologia , Dopamina/fisiologia , Interneurônios/fisiologia , Memória/fisiologia , Quinona Redutases/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Antagonistas de Dopamina/farmacologia , Medo/psicologia , Masculino , Consolidação da Memória/fisiologia , Memória de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reconhecimento Psicológico , Canais de Potássio Shab/metabolismo
10.
J Neurosci ; 39(47): 9369-9382, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31597726

RESUMO

Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Tonsila do Cerebelo/química , Animais , Complexo Nuclear Basolateral da Amígdala/química , Masculino , Camundongos , Vias Neurais/química , Vias Neurais/fisiologia , Neurônios/química , Técnicas de Cultura de Órgãos , Distribuição Aleatória
11.
J Neurosci ; 38(3): 648-658, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196323

RESUMO

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of four known kinases that respond to cellular stress by deactivating the eukaryotic initiation factor 2 α (eIF2α) or other signal transduction cascades. Recently, both eIF2α and its kinases were found to play a role in normal and pathological brain function. Here, we show that reduction of either the amount or the activity of PERK, specifically in the CA1 region of the hippocampus in young adult male mice, enhances neuronal excitability and improves cognitive function. In addition, this manipulation rescues the age-dependent cellular phenotype of reduced excitability and memory decline. Specifically, the reduction of PERK expression in the CA1 region of the hippocampus of middle-aged male mice using a viral vector rejuvenates hippocampal function and improves hippocampal-dependent learning. These results delineate a mechanism for behavior and neuronal aging and position PERK as a promising therapeutic target for age-dependent brain malfunction.SIGNIFICANCE STATEMENT We found that local reduced protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) expression or activity in the hippocampus enhances neuronal excitability and cognitive function in young normal mice, that old CA1 pyramidal cells have reduced excitability and increased PERK expression that can be rescued by reducing PERK expression in the hippocampus, and that reducing PERK expression in the hippocampus of middle-aged mice enhances hippocampal-dependent learning and memory and restores it to normal performance levels of young mice. These findings uncover an entirely new biological link among PERK, neuronal intrinsic properties, aging, and cognitive function. Moreover, our findings propose a new way to fight mild cognitive impairment and aging-related cognitive deterioration.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Memória/fisiologia , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/enzimologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia
12.
Cereb Cortex ; 27(3): 2226-2248, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27005990

RESUMO

Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Epilepsia/enzimologia , Neurônios/enzimologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/genética , Epilepsia/patologia , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 35(47): 15568-81, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609153

RESUMO

Learning of novel information, including novel taste, requires activation of neuromodulatory transmission mediated, for example, by the muscarinic acetylcholine receptors (mAChRs) in relevant brain structures. In addition, drugs enhancing the function of mAChRs are used to treat memory impairment and decline. However, the mechanisms underlying these effects are poorly understood. Here, using quantitative RT-PCR in Wistar Hola rats, we found quinone reductase 2 (QR2) to be expressed in the cortex in an mAChR-dependent manner. QR2 mRNA expression in the insular cortex is inversely correlated with mAChR activation both endogenously, after novel taste learning, and exogenously, after pharmacological manipulation of the muscarinic transmission. Moreover, reducing QR2 expression levels through lentiviral shRNA vectors or activity via inhibitors is sufficient to enhance long-term memories. We also show here that, in patients with Alzheimer's disease, QR2 is overexpressed in the cortex. It is suggested that QR2 expression in the cortex is a removable limiting factor of memory formation and thus serves as a new target to enhance cognitive function and delay the onset of neurodegenerative diseases. SIGNIFICANCE STATEMENT: We found that: (1) quinone reductase 2 (QR2) expression is a muscarinic-receptor-dependent removable constraint on memory formation in the cortex, (2) reducing QR2 expression or activity in the cortex enhances memory formation, and (3) Alzheimer's disease patients overexpressed QR2. We believe that these results propose a new mechanism by which muscarinic acetylcholine receptors affect cognition and suggest that inhibition of QR2 is a way to enhance cognition in normal and pathological conditions.


Assuntos
Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica , Memória de Longo Prazo/fisiologia , Quinona Redutases/biossíntese , Receptores Muscarínicos/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Humanos , Masculino , Quinona Redutases/genética , Ratos , Ratos Wistar
14.
J Neurosci ; 35(38): 12986-93, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400930

RESUMO

Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD. We have previously demonstrated that the most prevalent genetic risk factor for AD, the ApoE4 allele, is correlated with increased phosphorylation of the translation factor eIF2α. In the present study, we tested the possible involvement of additional members of the eIF2α pathway and identified increased mRNA expression of negative transcription factor ATF4 (aka CREB2) both in human and a mouse model expressing the human ApoE4 allele. Furthermore, injection of a PKR inhibitor rescued memory impairment and attenuated ATF4 mRNA increased expression in the ApoE4 mice. The results propose a new mechanism by which ApoE4 affects brain function and further suggest that inhibition of PKR is a way to restore ATF4 overexpression and memory impairment in early stages of sporadic AD. Significance statement: ATF4 mRNA relative quantities are elevated in ApoE4 allele carriers compared with noncarrier controls. This is true also for the ApoE ε4 human replacement mice. ApoE4 mice injected with PKR inhibitor (PKRi) demonstrate a significant reduction in ATF4 expression levels 3 h after one injection of PKRi. Treatment of ApoE4 human replacement mice with the PKRi before learning rescues the memory impairment of the ApoE4 AD model mice. We think that these results propose a new mechanism by which ApoE4 affects brain function and suggest that inhibition of PKR is a way to restore memory impairment in early stages of sporadic AD.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apolipoproteína E4/genética , Inibidores Enzimáticos/uso terapêutico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Proteínas Quinases/metabolismo , Fator 4 Ativador da Transcrição/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Condicionamento Psicológico/fisiologia , Medo/psicologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas
15.
Neurobiol Learn Mem ; 135: 115-124, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27481223

RESUMO

Regulation of protein degradation via the ubiquitin proteasome system is crucial for normal learning and synaptic plasticity processes. While some studies reveal that increased proteasome degradation is necessary for different types of learning, others suggest the proteasome to be a negative regulator of plasticity. We aim to understand the molecular and cellular processes taking place in the gustatory cortex (GC), which underlie appetitive and aversive forms of taste learning. Previously, we have shown that N-methyl d-aspartic acid receptor (NMDAR)-dependent upregulation of proteasome activity 4h after novel taste learning is necessary for the association of novel taste with malaise and formation of conditioned taste aversion (CTA). Here, we first identify a correlative increase in proteasome activity in the GC immediately after novel taste learning and study the upstream and downstream effectors of this modulated proteasome activity. Interestingly, proteasome-mediated degradation was reduced in the GC, 20min after novel taste consumption in a muscarinic acetylcholine receptor (mAChR)-dependent and NMDAR-independent manner. This reduction in protein degradation led to an increased amount of p70 S6 kinase (p70S6k), which was abolished in the presence of mAChR antagonist scopolamine. Infusion of lactacystin, a proteasome inhibitor, to the GC precluded the amnestic effect of scopolamine. This study shows for the first time that following novel taste learning there is a cortical, mAChR-dependent reduced proteasome activity that enables the memory of taste familiarity. Moreover, inhibition of degradation in the GC attenuates novel taste learning and of p70 S6 kinase correlative increased expression. These results shed light on the complex regulation of protein synthesis and degradation machineries in the cortex following novel taste experience.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Antagonistas Muscarínicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Muscarínicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Percepção Gustatória/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Escopolamina/farmacologia , Percepção Gustatória/efeitos dos fármacos
16.
Neurobiol Learn Mem ; 130: 7-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26785229

RESUMO

Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation.


Assuntos
Aprendizagem da Esquiva/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/metabolismo , Percepção Gustatória/fisiologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Córtex Somatossensorial/efeitos dos fármacos , Paladar/efeitos dos fármacos , Paladar/fisiologia , Percepção Gustatória/efeitos dos fármacos , Valina/análogos & derivados , Valina/farmacologia
17.
Mol Divers ; 20(4): 805-819, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27480630

RESUMO

Protein kinase RNA-activated (PKR) plays an important role in a broad range of intracellular regulatory mechanisms and in the pathophysiology of many human diseases, including microbial and viral infections, cancer, diabetes and neurodegenerative disorders. Recently, several potent PKR inhibitors have been synthesized. However, the enzyme's multifunctional character and a multitude of PKR downstream targets have prevented the successful transformation of such inhibitors into effective drugs. Thus, the need for additional PKR inhibitors remains. With the help of computer-aided drug-discovery tools, we designed and synthesized potential PKR inhibitors. Indeed, two compounds were found to inhibit recombinant PKR in pharmacologically relevant concentrations. One compound, 6-amino-3-methyl-2-oxo-N-phenyl-2,3-dihydro-1H-benzo[d]imidazole-1-carboxamide, also showed anti-apoptotic properties. The novel molecules diversify the existing pool of PKR inhibitors and provide a basis for the future development of compounds based on PKR signal transduction mechanism.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , eIF-2 Quinase/química , Sítios de Ligação , Domínio Catalítico , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade , eIF-2 Quinase/antagonistas & inibidores
18.
J Neurosci ; 34(44): 14624-32, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355215

RESUMO

Protein translation initiation is controlled by levels of eIF2α phosphorylation (p-eIF2α) on Ser51. In addition, increased p-eIF2α levels impair long-term synaptic plasticity and memory consolidation, whereas decreased levels enhance them. Levels of p-eIF2α are determined by four kinases, of which protein kinase RNA-activated (PKR), PKR-like endoplastic reticulum kinase (PERK), and general control nonderepressible 2 are extensively expressed in the mammalian mature brain. Following identification of PERK as the major kinase to determine basal levels of p-eIF2α in primary neuronal cultures, we tested its function as a physiological constraint of memory consolidation in the cortex, the brain structure suggested to store, at least in part, long-term memories in the mammalian brain. To that aim, insular cortex (IC)-dependent positive and negative forms of taste learning were used. Genetic reduction of PERK expression was accomplished by local microinfusion of a lentivirus harboring PERK Short hairpin RNA, and pharmacological inhibition was achieved by local microinfusion of a PERK-specific inhibitor (GSK2606414) to the rat IC. Both genetic reduction of PERK expression and pharmacological inhibition of its activity reduced p-eIF2α levels and enhanced novel taste learning and conditioned taste aversion, but not memory retrieval. Moreover, enhanced extinction was observed together with enhanced associative memory, suggesting increased cortical-dependent behavioral plasticity. The results suggest that, by phosphorylating eIF2α, PERK functions in the cortex as a physiological constraint of memory consolidation, and its downregulation serves as cognitive enhancement.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Paladar/fisiologia , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Indóis/farmacologia , Aprendizagem/efeitos dos fármacos , Camundongos , Fosforilação , RNA Interferente Pequeno , Ratos , Paladar/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
19.
J Neurosci ; 34(33): 11007-15, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122900

RESUMO

The ability to associate the consumption of a taste with its positive or negative consequences is fundamental to survival and influences the behavior of species ranging from invertebrate to human. As a result, for both research and clinical reasons, there has been a great effort to understand the neuronal circuits, as well as the cellular and molecular mechanisms, underlying taste learning. From a neuroanatomical perspective, the contributions of the cortex and amygdala are well documented; however, the literature is riddled with conflicting results regarding the role of the hippocampus in different facets of taste learning. Here, we use conditional genetics in mice to block NMDA receptor-dependent plasticity individually in each of the three major hippocampal subfields, CA1, CA3, and the dentate gyrus, via deletion of the NR1 subunit. Across the CA1, CA3, and dentate gyrus NR1 knock-out lines, we uncover a pattern of differential deficits that establish the dispensability of hippocampal plasticity in incidental taste learning, the requirement of CA1 plasticity for associative taste learning, and a specific requirement for plasticity in the dentate gyrus when there is a long temporal gap between the taste and its outcome. Together, these data establish that the hippocampus is involved in associative taste learning and suggest an episodic component to this type of memory.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
20.
J Neurosci ; 33(6): 2517-25, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392680

RESUMO

Age-associated memory deterioration (and the decline in ability to acquire new information) is one of the major diseases of our era. Cognitive enhancement can be achieved by using psycho-stimulants, such as caffeine or nicotine, but very little is known about drugs that can enhance the consolidation phase of memories in the cortex, the brain structure considered to store, at least partially, long-term memories. We used cortex-dependent taste-learning paradigms to test the hypothesis that pharmacological manipulation of the translation initiation eIF2α, which plays a role in hippocampus-dependent memory, can enhance positive or negative forms of taste memories. We found that dephosphorylation (Ser51) of eIF2α, specifically in the cortex, is both correlated with and necessary for normal memory consolidation. To reduce eIF2α phosphorylation and improve memory consolidation, we pharmacologically inhibited one of the eIF2α kinases, PKR, which is known to be involved in brain aging and Alzheimer's disease. Systemic or local microinjection of PKR inhibitor to the gustatory cortex enhanced both positive and negative forms of taste memory in rats and mice. Our results provide clear evidence that PKR plays a major role in cortex-dependent memory consolidation and, therefore, that pharmacological inhibition of PKR is a potential target for drugs to enhance cognition.


Assuntos
Córtex Cerebral/enzimologia , Memória de Longo Prazo/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Paladar/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Regulação para Baixo/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Paladar/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA