Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046025

RESUMO

The ongoing COVID-19 pandemic underscores the importance of developing reliable forecasts that would allow decision makers to devise appropriate response strategies. Despite much recent research on the topic, epidemic forecasting remains poorly understood. Researchers have attributed the difficulty of forecasting contagion dynamics to a multitude of factors, including complex behavioral responses, uncertainty in data, the stochastic nature of the underlying process, and the high sensitivity of the disease parameters to changes in the environment. We offer a rigorous explanation of the difficulty of short-term forecasting on networked populations using ideas from computational complexity. Specifically, we show that several forecasting problems (e.g., the probability that at least a given number of people will get infected at a given time and the probability that the number of infections will reach a peak at a given time) are computationally intractable. For instance, efficient solvability of such problems would imply that the number of satisfying assignments of an arbitrary Boolean formula in conjunctive normal form can be computed efficiently, violating a widely believed hypothesis in computational complexity. This intractability result holds even under the ideal situation, where all the disease parameters are known and are assumed to be insensitive to changes in the environment. From a computational complexity viewpoint, our results, which show that contagion dynamics become unpredictable for both macroscopic and individual properties, bring out some fundamental difficulties of predicting disease parameters. On the positive side, we develop efficient algorithms or approximation algorithms for restricted versions of forecasting problems.


Assuntos
Modelos Epidemiológicos , Previsões/métodos , Algoritmos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Humanos , Probabilidade , SARS-CoV-2 , Fatores de Tempo
2.
Data Min Knowl Discov ; 29(2): 423-465, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25750583

RESUMO

We consider the problem of inhibiting undesirable contagions (e.g. rumors, spread of mob behavior) in social networks. Much of the work in this context has been carried out under the 1-threshold model, where diffusion occurs when a node has just one neighbor with the contagion. We study the problem of inhibiting more complex contagions in social networks where nodes may have thresholds larger than 1. The goal is to minimize the propagation of the contagion by removing a small number of nodes (called critical nodes) from the network. We study several versions of this problem and prove that, in general, they cannot even be efficiently approximated to within any factor ρ ≥ 1, unless P = NP. We develop efficient and practical heuristics for these problems and carry out an experimental study of their performance on three well known social networks, namely epinions, wikipedia and slashdot. Our results show that these heuristics perform significantly better than five other known methods. We also establish an efficiently computable upper bound on the number of nodes to which a contagion can spread and evaluate this bound on many real and synthetic networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA