Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(45): 28175-28182, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106397

RESUMO

Excessive nitrogen (N) and phosphorus (P) loading is one of the greatest threats to aquatic ecosystems in the Anthropocene, causing eutrophication of rivers, lakes, and marine coastlines worldwide. For lakes across the United States, eutrophication is driven largely by nonpoint nutrient sources from tributaries that drain surrounding watersheds. Decades of monitoring and regulatory efforts have paid little attention to small tributaries of large water bodies, despite their ubiquity and potential local importance. We used a snapshot of nutrient inputs from nearly all tributaries of Lake Michigan-the world's fifth largest freshwater lake by volume-to determine how land cover and dams alter nutrient inputs across watershed sizes. Loads, concentrations, stoichiometry (N:P), and bioavailability (percentage dissolved inorganic nutrients) varied by orders of magnitude among tributaries, creating a mosaic of coastal nutrient inputs. The 6 largest of 235 tributaries accounted for ∼70% of the daily N and P delivered to Lake Michigan. However, small tributaries exhibited nutrient loads that were high for their size and biased toward dissolved inorganic forms. Higher bioavailability of nutrients from small watersheds suggests greater potential to fuel algal blooms in coastal areas, especially given the likelihood that their plumes become trapped and then overlap in the nearshore zone. Our findings reveal an underappreciated role that small streams may play in driving coastal eutrophication in large water bodies. Although they represent only a modest proportion of lake-wide loads, expanding nutrient management efforts to address smaller watersheds could reduce the ecological impacts of nutrient loading on valuable nearshore ecosystems.


Assuntos
Ecossistema , Lagos/química , Rios/química , Disponibilidade Biológica , Monitoramento Ambiental , Eutrofização/fisiologia , Michigan , Nitrogênio/análise , Fósforo/análise
2.
Mol Ecol ; 31(16): 4224-4241, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751487

RESUMO

Examining natural selection in wild populations is challenging, but crucial to understanding many ecological and evolutionary processes. Additionally, in hybridizing populations, natural selection may be an important determinant of the eventual outcome of hybridization. We characterized several components of relative fitness in hybridizing populations of Yellowstone cutthroat trout and rainbow trout in an effort to better understand the prolonged persistence of both parental species despite predictions of extirpation. Thousands of genomic loci enabled precise quantification of hybrid status in adult and subsequent juvenile generations; a subset of those data also identified parent-offspring relationships. We used linear models and simulations to assess the effects of ancestry on reproductive output and mate choice decisions. We found a relatively low number of late-stage (F3+) hybrids and an excess of F2 juveniles relative to the adult generation in one location, which suggests the presence of hybrid breakdown decreasing the fitness of F2+ hybrids later in life. Assessments of reproductive output showed that Yellowstone cutthroat trout are more likely to successfully reproduce and produce slightly more offspring than their rainbow trout and hybrid counterparts. Mate choice appeared to be largely random, though we did find statistical support for slight female preference for males of similar ancestry. Together, these results show that native Yellowstone cutthroat trout are able to outperform rainbow trout in terms of reproduction and suggest that management action to exclude rainbow trout from spawning locations may bolster the now-rare Yellowstone cutthroat trout.


Assuntos
Oncorhynchus mykiss , Oncorhynchus , Animais , Feminino , Aptidão Genética , Genoma , Hibridização Genética , Masculino , Oncorhynchus/genética , Oncorhynchus mykiss/genética
3.
Ecol Evol ; 14(7): e11706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041010

RESUMO

Dams have negatively affected freshwater biodiversity throughout the world. These negative effects tend to be exacerbated for aquatic taxa with migratory life histories, and for taxa whose habitat is fundamentally altered by the formation of large reservoirs. Sauger (Sander candadensis; Percidae), large-bodied migratory fishes native to North America, have seen population declines over much of the species' range, and dams are often implicated for their role in blocking access to spawning habitat and otherwise negatively affecting river habitat. Furthermore, hybridization appears to be more frequent between sauger and walleye in the reservoirs formed by large dams. In this study, we examine the role of dams in altering sauger population connectivity and facilitating hybridization with introduced walleye in Wyoming's Wind River and Bighorn River systems. We collected genomic data from individuals sampled over a large spatial scale and replicated sampling throughout the spawning season, with the intent to capture potential variation in hybridization prevalence or genomic divergence between sauger with different life histories. The timing of sampling was not related to hybridization prevalence or population divergence, suggesting limited genetic differences between sauger spawning in different time and places. Overall, there was limited hybridization detected, however, hybridization was most prevalent in Boysen Reservoir (a large impounded section of the Wind River). Dams in the lower Wind River and upper Bighorn River were associated with population divergence between sauger upstream and downstream of the dams, and demographic models suggest that this divergence has occurred in concordance with the construction of the dam. Sauger upstream of the dams exhibited substantially lower estimates of genetic diversity, which implies that disrupted connectivity between Wind River and Bighorn River sauger populations may already be causing negative demographic effects. This research points towards the importance of considering the evolutionary consequences of dams on fish populations in addition to the threats they pose to population persistence.

4.
Evolution ; 77(7): 1522-1538, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37082829

RESUMO

Eco-evolutionary interactions following ecosystem change provide critical insight into the ability of organisms to adapt to shifting resource landscapes. Here we explore evidence for the rapid parallel evolution of trout feeding morphology following eco-evolutionary interactions with zooplankton in alpine lakes stocked at different points in time in the Wind River Range (Wyoming, USA). In this system, trout predation has altered the zooplankton species community and driven a decrease in average zooplankton size. In some lakes that were stocked decades ago, we find shifts in gill raker traits consistent with the hypothesis that trout have rapidly adapted to exploit available smaller-bodied zooplankton more effectively. We explore this morphological response in multiple lake populations across two species of trout (cutthroat trout, Oncorhynchus clarkii, and golden trout Oncorhynchus aguabonita) and examine the impact of resource availability on morphological variation in gill raker number among lakes. Furthermore, we present genetic data to provide evidence that historically stocked cutthroat trout populations likely derive from multiple population sources, and incorporate variation from genomic relatedness in our exploration of environmental predictors of feeding morphology. These findings describe rapid adaptation and eco-evolutionary interactions in trout and document an evolutionary response to novel, contemporary ecosystem change.


Assuntos
Ecossistema , Truta , Animais , Truta/genética , Fenótipo , Genoma , Adaptação Fisiológica
5.
Evol Appl ; 14(7): 1747-1761, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295361

RESUMO

How much does natural selection, as opposed to genetic drift, admixture, and gene flow, contribute to the evolution of invasive species following introduction to a new environment? Here we assess how evolution can shape biological invasions by examining population genomic variation in non-native guppies (Poecilia reticulata) introduced to the Hawaiian Islands approximately a century ago. By examining 18 invasive populations from four Hawaiian islands and four populations from the native range in northern South America, we reconstructed the history of introductions and evaluated population structure as well as the extent of ongoing gene flow across watersheds and among islands. Patterns of differentiation indicate that guppies have developed significant population structure, with little natural or human-mediated gene flow having occurred among populations following introduction. Demographic modeling and admixture graph analyses together suggest that guppies were initially introduced to O'ahu and Maui and then translocated to Hawai'i and Kaua'i. We detected evidence for only one introduction event from the native range, implying that any adaptive evolution in introduced populations likely utilized the genetic variation present in the founding population. Environmental association tests accounting for population structure identified loci exhibiting signatures of adaptive variation related to predators and landscape characteristics but not nutrient regimes. When paired with high estimates of effective population sizes and detectable population structure, the presence of environment-associated loci supports the role of natural selection in shaping contemporary evolution of Hawaiian guppy populations. Our findings indicate that local adaptation may engender invasion success, particularly in species with life histories that facilitate rapid evolution. Finally, evidence of low gene flow between populations suggests that removal could be an effective approach to control invasive guppies across the Hawaiian archipelago.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA