Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 110(3): 349-366, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668029

RESUMO

The immune system is an active component of bone repair. Mast cells influence the recruitment of macrophages, osteoclasts and blood vessels into the repair tissue. We hypothesized that if mast cells and other immune cells are sensitized to recognize broken bone, they will mount an increased response to subsequent fractures that may be translated into enhanced healing. To test this, we created a bone defect on the left leg of anesthetized mice and 2 weeks later, a second one on the right leg. Bone repair in the right legs was then compared to control mice that underwent the creation of bilateral window bone defects at the same time. Mice were euthanized at 14 and 56 days. Mineralized tissue quantity and morphometric parameters were assessed using micro-CT and histology. The activity of osteoblasts, osteoclasts, vascular endothelial cells, mast cells, and macrophages was evaluated using histochemistry. Our main findings were (1) no significant differences in the amount of bone produced at 14- or 56 days post-operative between groups; (2) mice exposed to subsequent fractures showed significantly better bone morphometric parameters after 56 days post-operative; and (3) significant increases in the content of blood vessels, osteoclasts, and the number of macrophages in the subsequent fracture group. Our results provide strong evidence that a transient increase in the inflammatory state of a healing injury promotes faster bone remodelling and increased neo-angiogenesis. This phenomenon is also characterized by changes in mast cell and macrophage content that translate into more active recruitment of mesenchymal stromal cells.


Assuntos
Células Endoteliais , Fraturas Ósseas , Animais , Remodelação Óssea , Consolidação da Fratura , Fraturas Ósseas/patologia , Camundongos , Osteoblastos , Osteoclastos/patologia
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613604

RESUMO

Bone is a frequent site of tumor metastasis. The bone-tumor microenvironment is heterogeneous and complex in nature. Such complexity is compounded by relations between metastatic and bone cells influencing their sensitivity/resistance to chemotherapeutics. Standard chemotherapeutics may not show efficacy for every patient, and new therapeutics are slow to emerge, owing to the limitations of existing 2D/3D models. We previously developed a 3D interface model for personalized therapeutic screening, consisting of an electrospun poly lactic acid mesh activated with plasma species and seeded with stromal cells. Tumor cells embedded in an alginate-gelatin hydrogel are overlaid to create a physiologic 3D interface. Here, we applied our 3D model as a migration assay tool to verify the migratory behavior of different patient-derived bone metastasized cells. We assessed the impact of two different chemotherapeutics, Doxorubicin and Cisplatin, on migration of patient cells and their immortalized cell line counterparts. We observed different migratory behaviors and cellular metabolic activities blocked with both Doxorubicin and Cisplatin treatment; however, higher efficiency or lower IC50 was observed with Doxorubicin. Gene expression analysis of MDA-MB231 that migrated through our 3D hybrid model verified epithelial-mesenchymal transition through increased expression of mesenchymal markers involved in the metastasis process. Our findings indicate that we can model tumor migration in vivo, in line with different cell characteristics and it may be a suitable drug screening tool for personalized medicine approaches in metastatic cancer treatment.


Assuntos
Neoplasias Ósseas , Cisplatino , Humanos , Microambiente Tumoral , Neoplasias Ósseas/metabolismo , Transição Epitelial-Mesenquimal , Doxorrubicina/farmacologia
3.
Cancer Cell Int ; 19: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787671

RESUMO

BACKGROUND: Bisphosphonates (BPs) including zoledronate (zol) have become standard care for bone metastases as they effectively inhibit tumor-induced osteolysis and associated pain. Several studies have also suggested that zol has direct anti-tumor activity. Systemic administration at high doses is the current approach to deliver zol, yet it has been associated with debilitating side effects. Local therapeutic delivery offers the ability to administer much lower total dosage, while at the same time maintaining sustained high-local drug concentration directly at the target treatment site. Here, we aimed to assess effects of lower doses of zol on bone metastases over a longer time. METHODS: Prostate cancer cell line LAPC4 and prostate-induced bone metastasis cells were treated with zol at 1, 3 and 10 µM for 7 days. Following treatment, cell proliferation was assessed using Almarblue®, Vybrant MTT®, and Live/Dead® viability/cytotoxicity assays. Additionally, cell migration and invasion were carried out using Falcon™ cell culture inserts and Cultrex® 3D spheroid cell invasion assays respectively. RESULTS: We show that treatment with 3-10 µM zol over 7-days significantly decreased cell proliferation in both the prostate cancer cell line LAPC4 and cells from spine metastases secondary to prostate cancer. Using the same low-dose and longer time course for treatment, we demonstrate that 10 µM zol also significantly inhibits tumor cell migration and 3D-cell growth/invasion. CONCLUSIONS: This project harnesses the potential of using zol at low doses for longer treatment periods, which may be a viable treatment modality when coupled with biomaterials or biodevices for local delivery.

4.
J Biol Chem ; 291(7): 3541-51, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26668319

RESUMO

Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1ß (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1ß gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1ß treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo.


Assuntos
Regulação da Expressão Gênica , Disco Intervertebral/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Receptor 2 Toll-Like/agonistas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adolescente , Adulto , Anti-Inflamatórios não Esteroides/farmacologia , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Ligantes , Vértebras Lombares , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Precursores de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Doadores de Tecidos , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo , Adulto Jovem
5.
J Am Chem Soc ; 138(3): 1078-83, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26708288

RESUMO

Lanthanide-doped upconverting nanoparticles (UCNPs) have emerged as excellent nanotransducers for converting longer wavelength near-infrared (NIR) light to shorter wavelengths spanning the ultraviolet (UV) to the visible (Vis) regions of the spectrum via a multiphoton absorption process, known as upconversion. Here, we report the development of NIR to UV-Vis-NIR UCNPs consisting of LiYF4:Yb(3+)/Tm(3+)@SiO2 individually coated with a 10 ± 2 nm layer of chitosan (CH) hydrogel cross-linked with a photocleavable cross-linker (PhL). We encapsulated fluorescent-bovine serum albumin (FITC-BSA) inside the gel. Under 980 nm excitation, the upconverted UV emission cleaves the PhL cross-links and instantaneously liberates the FITC-BSA under 2 cm thick tissue. The release is immediately arrested if the excitation source is switched off. The upconverted NIR light allows for the tracking of particles under the tissue. Nucleus pulposus (NP) cells cultured with UCNPs are viable both in the presence and in the absence of laser irradiation. Controlled drug delivery of large biomolecules and deep tissue imaging make this system an excellent theranostic platform for tissue engineering, biomapping, and cellular imaging applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Raios Infravermelhos , Nanopartículas/química , Fotólise , Nanomedicina Teranóstica , Animais , Bovinos , Sobrevivência Celular , Células Cultivadas , Quitosana/química , Fluorescência , Fluoretos/química , Lítio/química , Neurônios/citologia , Neurônios/metabolismo , Soroalbumina Bovina/química , Dióxido de Silício/química , Tecnécio/química , Ítrio/química
6.
Biochim Biophys Acta ; 1840(1): 605-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144567

RESUMO

BACKGROUND: Currently available methods for contrast agent-based magnetic resonance imaging (MRI) and computed tomography (CT) of articular cartilage can only detect cartilage degradation after biochemical changes have occurred within the tissue volume. Differential adsorption of solutes to damaged and intact surfaces of cartilage may be used as a potential mechanism for detection of injuries before biochemical changes in the tissue volume occur. METHODS: Adsorption of four fluorescent macromolecules to surfaces of injured and sliced cartilage explants was studied. Solutes included native dextran, dextrans modified with aldehyde groups or a chondroitin sulfate (CS)-binding peptide and the peptide alone. RESULTS: Adsorption of solutes to fissures was significantly less than to intact surfaces of injured and sliced explants. Moreover, solute adsorption at intact surfaces of injured and sliced explants was less reversible than at surfaces of uninjured explants. Modification of dextrans with aldehyde or the peptide enhanced adsorption with the same level of differential adsorption to cracked and intact surfaces. However, aldehyde-dextran exhibited irreversible adsorption. Equilibration of explants in solutes did not decrease the viability of chondrocytes. CONCLUSIONS AND GENERAL SIGNIFICANCE: Studied solutes showed promising potential for detection of surface injuries based on differential interactions with cracked and intact surfaces. Additionally, altered adsorption properties at surfaces of damaged cartilage which visually look healthy can be used to detect micro-damage or biochemical changes in these regions. Studied solutes can be used in in vivo fluorescence imaging methods or conjugated with MRI or CT contrast agents to develop functional imaging agents.


Assuntos
Aldeídos/metabolismo , Cartilagem Articular/metabolismo , Sulfatos de Condroitina/metabolismo , Meios de Contraste/metabolismo , Dextranos/metabolismo , Desenho de Fármacos , Glicosaminoglicanos/metabolismo , Adsorção , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/lesões , Difusão , Humanos , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Tomografia Computadorizada por Raios X
7.
Int J Mol Sci ; 16(7): 15118-35, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26151846

RESUMO

Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.


Assuntos
Disco Intervertebral/fisiologia , Impressão Tridimensional , Regeneração , Alicerces Teciduais/química , Animais , Butadienos/química , Bovinos , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Disco Intervertebral/citologia , Ácido Láctico/química , Poliésteres , Polímeros/química , Estirenos/química , Alicerces Teciduais/efeitos adversos
8.
J Cell Mol Med ; 18(6): 1213-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24650225

RESUMO

Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1ß, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Degeneração do Disco Intervertebral/fisiopatologia , Dor Lombar/etiologia , Dor Lombar/patologia , Neuritos/patologia , Neurônios/patologia , Nociceptividade/fisiologia , Adulto , Animais , Apoptose , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/complicações , Dor Lombar/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
9.
Int J Mol Sci ; 15(8): 14427-41, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25196344

RESUMO

Osteoarthritis (OA) is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF). Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS) of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Dor/metabolismo , Dor/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Humanos , Fator de Crescimento Neural/metabolismo
10.
Biophys J ; 105(10): 2427-36, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24268155

RESUMO

The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces.


Assuntos
Cartilagem Articular/lesões , Corantes Fluorescentes/metabolismo , Extremidade Inferior/lesões , Fenômenos Mecânicos , Adsorção , Animais , Fenômenos Biomecânicos , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Bovinos , Sobrevivência Celular , Glicosaminoglicanos/metabolismo , Imagem Molecular , Propriedades de Superfície
11.
J Cell Mol Med ; 17(4): 508-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23480786

RESUMO

Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell-based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes 'dedifferentiation' into fibroblastic cells. Mitogen-activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up-regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up-regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow-on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies.


Assuntos
Cartilagem Articular/citologia , Condrócitos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Antracenos/farmacologia , Bovinos , Desdiferenciação Celular , Proliferação de Células , Sobrevivência Celular , Condrogênese , Matriz Extracelular/metabolismo , Flavonoides/farmacologia , Expressão Gênica , Glicosaminoglicanos/metabolismo , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
12.
Differentiation ; 83(4): 179-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22381625

RESUMO

Oscillatory mechanical stimulation at relatively high frequencies (0.1 Hz) has been shown to inhibit adipogenic and promote osteogenic differentiation of mesenchymal stem cells. However, for physiological interpretations and ease of implementation it is of interest to know whether different rates of mechanical stimulation can produce similar results. We hypothesized that relatively low frequency mechanical stimulation (0.01 Hz) can inhibit adipogenic differentiation of C3H10T1/2 mouse mesenchymal stem cells, even in a potent adipogenic differentiation medium. C3H10T1/2 cells were cultured in adipogenic medium under control (non-mechanically stimulated) conditions and under oscillatory surface stretch with 10% amplitude and 0.01 Hz frequency for 6h per day for up to 5 days. Cell population was assessed by counting and adipogenic differentiation was assessed by real-time quantitative PCR (qPCR) analysis of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) after 3 and 5 days. Involvement of the ERK signaling pathway was assessed by Western blot. Low frequency mechanical stimulation significantly decreased expression of PPARγ after 3 days and FABP4 after 3 and 5 days versus non-stimulated culture. ERK signaling was decreased in mechanically-stimulated culture, indicating a role in the inhibition of adipogenic differentiation. Application of this study: Low frequency mechanical stimulation may provide a technically simple means for control of mesenchymal stem cell differentiation in cell-based therapies, particularly for inhibition of differentiation toward undesired adipogenic lineages.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Estimulação Física , Animais , Células Cultivadas , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Micromachines (Basel) ; 15(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38258202

RESUMO

Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of infection and biofilm formation associated with orthopedic implants, which may develop anti-microbial resistance. To promote bone repair while also locally delivering therapeutics, 3D-printed implants serve as a suitable alternative. Soft, nanoporous 3D-printed filaments made from a thermoplastic polyurethane and polyvinyl alcohol blend, LAY-FOMM and LAY-FELT, have shown promise for drug delivery and orthopedic applications. Here, we compare 3D printability and sustained antibiotic release kinetics from two types of commercial 3D-printed porous filaments suitable for bone tissue engineering applications. We found that both LAY-FOMM and LAY-FELT could be consistently printed into scaffolds for drug delivery. Further, the materials could sustainably release Tetracycline over 3 days, independent of material type and infill geometry. The drug-loaded materials did not show any cytotoxicity when cultured with primary human fibroblasts. We conclude that both LAY-FOMM and LAY-FELT 3D-printed scaffolds are suitable devices for local antibiotic delivery applications, and they may have potential applications to prophylactically reduce infections in orthopedic reconstruction surgery.

14.
Biomaterials ; 286: 121606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660820

RESUMO

Tendons are force transmitting mechanosensitive tissues predominantly comprised of highly aligned collagen type I fibres. In this study, the recently introduced gel aspiration-ejection method was used to rapidly fabricate aligned dense collagen (ADC) hydrogel scaffolds. ADCs provide a biomimetic environment compared to traditional collagen hydrogels that are mechanically unstable and comprised of randomly oriented fibrils. The ADC scaffolds were shown to be anisotropic with comparable stiffness to immature tendons. Furthermore, the application of static and cyclic uniaxial loading, short-term (48 h) and high-strain (20%), resulted in a 3-fold increase in both the ultimate tensile strength and modulus of ADCs. Similar mechanical activation of human mesenchymal stem cell (MSC) seeded ADCs in serum- and growth factor-free medium induced their tenogenic differentiation. Both static and cyclic loading profiles resulted in a greater than 12-fold increase in scleraxis gene expression and either suppressed or maintained osteogenic and chondrogenic expressions. Following the 48 h mechanoactivation period, the MSC-seeded scaffolds were matured by tethering in basal medium without further external mechanical stimulation for 19 days, altogether making up 21 days of culture. Extensive cell-induced matrix remodeling and deposition of collagen types I and III, tenascin-C and tenomodulin were observed, where initial cyclic loading induced significantly higher tenomodulin protein content. Moreover, the initial short-term mechanical stimulation elongated and polarized seeded MSCs, and overall cell alignment was significantly increased in those under static loading. These findings indicate the regenerative potential of the ADC scaffolds for short-term mechanoactivated tenogenic differentiation, which were achieved even in the absence of serum and growth factors that may potentially increase clinical translatability.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Humanos , Hidrogéis/metabolismo , Engenharia Tecidual/métodos
15.
Micromachines (Basel) ; 13(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457892

RESUMO

Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening.

16.
Biomater Adv ; 134: 112566, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35523644

RESUMO

Metastatic cancers can be highly heterogeneous, show large patient variability and are typically hard to treat due to chemoresistance. Personalized therapies are therefore needed to suppress tumor growth and enhance patient's quality of life. Identifying appropriate patient-specific therapies remains a challenge though, due mainly to non-physiological in vitro culture systems. Therefore, more complex and physiological in vitro human cancer microenvironment tools could drastically aid in development of new therapies. We developed a plasma-modified, electro-spun 3D scaffold (PP-3D-S) that can mimic the human cancer microenvironment for customized-cancer therapeutic screening. The PP-3D-S was characterized for optimal plasma-modifying treatment and scaffolds morphology including fiber diameter and pore size. PP-3D-S was then seeded with human fibroblasts to mimic a stromal tissue layer; cell adhesion on plasma-modified poly (lactic acid), PLA, electrospun mats vastly exceeded that on untreated controls. The cell-seeded scaffolds were then overlaid with alginate/gelatin-based hydrogel embedded with MDA-MB231 human breast cancer cells, representing a tumor-tissue interface. Among three different plasma treatments, we found that NH3 plasma promoted the most tumor cell migration to the scaffold surfaces after 7 days of culture. For all treated and non-treated mats, we observed a significant difference in tumor cell migration between small-sized and either medium- or large-sized scaffolds. In addition, we found that the PP-3D-S was highly comparable to the standard Matrigel® migration assays in two different sets of doxorubicin screening experiments, where 75% reduction in migration was achieved with 0.5 µM doxorubicin for both systems. Taken together, our data indicate that PP-3D-S is an effective, low-cost, and easy-to-use alternate 3D tumor migration model which may be suitable as a physiological drug screening tool for personalized medicine against metastatic cancers.


Assuntos
Qualidade de Vida , Alicerces Teciduais , Técnicas de Cocultura , Doxorrubicina/farmacologia , Humanos , Hidrogéis/farmacologia
17.
APL Bioeng ; 5(1): 011502, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33564740

RESUMO

Bioprinting is a tool increasingly used in tissue engineering laboratories around the world. As an extension to classic tissue engineering, it enables high levels of control over the spatial deposition of cells, materials, and other factors. It is a field with huge promise for the production of implantable tissues and even organs, but the availability of functional bioinks is a barrier to success. Extrusion bioprinting is the most commonly used technique, where high-viscosity solutions of materials and cells are required to ensure good shape fidelity of the printed tissue construct. This is contradictory to hydrogels used in tissue engineering, which are generally of low viscosity prior to cross-linking to ensure cell viability, making them not directly translatable to bioprinting. This review provides an overview of the important rheological parameters for bioinks and methods to assess printability, as well as the effect of bioink rheology on cell viability. Developments over the last five years in bioink formulations and the use of suspended printing to overcome rheological limitations are then discussed.

18.
Materials (Basel) ; 14(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885408

RESUMO

Tooth sensitivity is a painful and very common problem. Often stimulated by consuming hot, cold, sweet, or acidic foods, it is associated with exposed dentin microtubules that are open to dental pulp. One common treatment for tooth hypersensitivity is the application of occlusive particles to block dentin microtubules. The primary methodology currently used to test the penetration and occlusion of particles into dentin pores relies upon dentin discs cut from extracted bovine/human teeth. However, this method is limited due to low accessibility to the raw material. Thus, there is a need for an in vitro dentin model to characterize the effectiveness of occlusive agents. Three-dimensional printing technologies have emerged that make the printing of dentin-like structures possible. This study sought to develop and print a biomaterial ink that mimicked the natural composition and structure of dentin tubules. A formulation of type I collagen (Col), nanocrystalline hydroxyapatite (HAp), and alginate (Alg) was found to be suitable for the 3D printing of scaffolds. The performance of the 3D printed dentin model was compared to the natural dentin disk by image analysis via scanning electron microscopy (SEM), both pre- and post-treatment with occlusive microparticles, to evaluate the degree of dentinal tubule occlusion. The cytocompatibility of printed scaffolds was also confirmed in vitro. This is a promising biomaterial system for the 3D printing of dentin mimics.

19.
Mater Sci Eng C Mater Biol Appl ; 120: 111743, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545885

RESUMO

Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO2-(23)Na2O-(20)CaO-(4)P2O5, wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Colágeno , Géis , Vidro , Humanos , Camundongos , Dióxido de Silício , Células-Tronco
20.
Front Cell Dev Biol ; 9: 654518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307346

RESUMO

Orthopedic tumor resection, trauma, or degenerative disease surgeries can result in large bone defects and often require bone grafting. However, standard autologous bone grafting has been associated with donor site morbidity and/or limited quantity. As an alternate, allografts with or without metallic or polyether-etherketone have been used as grafting substitutes. However, these may have drawbacks as well, including stress shielding, pseudarthrosis, disease-transmission, and infection. There is therefore a need for alternative bone substitutes, such as the use of mechanically compliant three-dimensional (3D)-printed scaffolds. Several off-the-shelf materials are available for low-cost fused deposition 3D printing such as polylactic acid (PLA) and polycaprolactone (PCL). We have previously described the feasibility of 3D-printed PLA scaffolds to support cell activity and extracellular matrix deposition. In this study, we investigate two medical-grade filaments consistent with specifications found in American Society for Testing and Materials (ASTM) standard for semi-crystalline polylactide polymers for surgical implants, a pure polymer (100M) and a copolymeric material (7415) for their cytocompatibility and suitability in bone tissue engineering. Moreover, we assessed the impact on osteo-inductive properties with the addition of beta-tricalcium phosphate (ß-TCP) minerals and assessed their mechanical properties. 100M and 7415 scaffolds with the additive ß-TCP demonstrated superior mesenchymal stem cells (MSCs) differentiation detected via increased alkaline phosphatase activity (6-fold and 1.5-fold, respectively) and mineralized matrix deposition (14-fold and 5-fold, respectively) in vitro. Furthermore, we evaluated in vivo compatibility, biosafety and bone repair potential in a rat femur window defect model. 100M+ß -TCP implants displayed a positive biosafety profile and showed significantly enhanced new bone formation compared to 100M implants evidenced by µCT (39 versus 25% bone volume/tissue volume ratio) and histological analysis 6 weeks post-implantation. These scaffolds are encouraging composite biomaterials for repairing bone applications with a great potential for clinical translation. Further analyses are required with appropriate evaluation in a larger critical-sized defect animal model with long-term follow-up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA