Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(22): 223001, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494068

RESUMO

Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

2.
Phys Rev Lett ; 111(4): 043003, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931363

RESUMO

We have obtained experimental photo-double- and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17-90 eV. The cross sections are 2 and 2.5 times larger than those for C60 and appear to be compressed and shifted in photon energy as compared to C60. Our analysis reveals that the additional electron in C60- primarily produces screening which is responsible for the modification of the spectrum. Both screening effects, the shift and the compression, can be quantitatively accounted for by a linear transformation of the energy axis. Applying the transformation allows us to map the neutral and negative ion cross sections onto each other, pointing out the close relationship of correlated few-electron dynamics in neutral and negatively charged extended systems. In contrast, dynamics of neutral and negatively charged atoms or small molecules are typically not closely related.

3.
Phys Rev Lett ; 106(15): 153002, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568550

RESUMO

We find that energy surfaces of more than two atoms or molecules interacting via transition dipole-dipole potentials generically possess conical intersections (CIs). Typically only few atoms participate strongly in such an intersection. For the fundamental case, a circular trimer, we show how the CI affects adiabatic excitation transport via electronic decoherence or geometric phase interference. These phenomena may be experimentally accessible if the trimer is realized by light alkali atoms in a ring trap, whose interactions are induced by off-resonant dressing with Rydberg states. Such a setup promises a direct probe of the full many-body density dynamics near a CI.

4.
Phys Rev Lett ; 107(17): 173402, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107516

RESUMO

We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a nonspherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.

5.
Phys Rev Lett ; 105(5): 053004, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867911

RESUMO

In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

6.
Phys Rev Lett ; 105(16): 163201, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230969

RESUMO

In a combined experimental and theoretical effort we report on two novel types of ultracold long-range Rydberg molecules. First, we demonstrate the creation of triatomic molecules of one Rydberg atom and two ground-state atoms in a single-step photoassociation. Second, we assign a series of excited dimer states that are bound by a so far unexplored mechanism based on internal quantum reflection at a steep potential drop. The properties of the Rydberg molecules identified in this work qualify them as prototypes for a new type of chemistry at ultracold temperatures.

7.
Sci Rep ; 9(1): 17883, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784628

RESUMO

We present experimental results on the characteristic sharing of available excess energy, ranging from 11-221 eV, between two electrons in single-photon direct double ionization of He. An effective parametrization of the sharing distributions is presented along with an empirical model that describes the complete shape of the distribution based on a single experimentally determinable parameter. The measured total energy sharing distributions are separated into two distributions representing the shake-off and knock-out parts by simulating the sharing distribution curves expected from a pure wave collapse after a sudden removal of the primary electron. In this way, empirical knock-out distributions are extracted and both the shake-off and knock-out distributions are parametrized. These results suggest a simple method that can be applied to other atomic and molecular systems to experimentally study important aspects of the direct double ionization process.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056203, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233735

RESUMO

The emergence of chaotic motion is discussed for hard-point like and soft collisions between two particles in a one-dimensional box. It is known that ergodicity may be obtained in hard-point like collisions for specific mass ratios gamma=m(2)/m(1) of the two particles and that Lyapunov exponents are zero. However, if a Yukawa interaction between the particles is introduced, we show analytically that positive Lyapunov exponents are generated due to double collisions close to the walls. While the largest finite-time Lyapunov exponent changes smoothly with gamma , the number of occurrences of the most probable one, extracted from the distribution of finite-time Lyapunov exponents over initial conditions, reveals details about the phase-space dynamics. In particular, the influence of the integrable and pseudointegrable dynamics without Yukawa interaction for specific mass ratios can be clearly identified and demonstrates the sensitivity of the finite-time Lyapunov exponents as a phase-space probe. Being not restricted to two-dimensional problems such as Poincaré sections, the number of occurrences of the most probable Lyapunov exponents suggests itself as a suitable tool to characterize phase-space dynamics in higher dimensions. This is shown for the problem of two interacting particles in a circular billiard.

9.
Phys Rev E ; 96(1-1): 013309, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347183

RESUMO

We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long-range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalization group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance, and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056404, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181525

RESUMO

A simple, semianalytical model is proposed for nonrelativistic Coulomb explosion of a uniformly charged spheroid. This model allows us to derive the time-dependent particle energy distributions. Simple expressions are also given for the characteristic explosion time and maximum particle energies in the limits of extreme prolate and oblate spheroids as well as for the sphere. Results of particle simulations are found to be in remarkably good agreement with the model.


Assuntos
Física/métodos , Algoritmos , Simulação por Computador , Elétrons , Gases , Íons , Lasers , Modelos Estatísticos , Modelos Teóricos , Simulação de Dinâmica Molecular , Fatores de Tempo , Raios X
11.
Science ; 334(6059): 1110-4, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22116881

RESUMO

Permanent electric dipole moments in molecules require a breaking of parity symmetry. Conventionally, this symmetry breaking relies on the presence of heteronuclear constituents. We report the observation of a permanent electric dipole moment in a homonuclear molecule in which the binding is based on asymmetric electronic excitation between the atoms. These exotic molecules consist of a ground-state rubidium (Rb) atom bound inside a second Rb atom electronically excited to a high-lying Rydberg state. Detailed calculations predict appreciable dipole moments on the order of 1 Debye, in excellent agreement with the observations.

12.
Phys Rev Lett ; 98(2): 023002, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358602

RESUMO

It is shown that the two-step excitation scheme typically used to create an ultracold Rydberg gas can be described with an effective two-level rate equation, greatly reducing the complexity of the optical Bloch equations. This allows us to efficiently solve the many-body problem of interacting cold atoms with a Monte Carlo technique. Our results reproduce the observed excitation blockade effect. However, we demonstrate that an Autler-Townes double peak structure in the two-step excitation scheme, which occurs for moderate pulse lengths as used in the experiment, can give rise to an antiblockade effect. It is most pronounced for atoms arranged on a lattice. Since the effect is robust against a large number of lattice defects it should be experimentally realizable with an optical lattice created by CO2 lasers.

13.
Phys Rev Lett ; 94(20): 205003, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-16090258

RESUMO

We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter Gamma(i) increases considerably in later stages of the expansion, reaching the strongly coupled regime despite the well known initial drop of Gamma(i) to order unity due to disorder-induced heating. Furthermore, we formulate a suitable measure of correlation and show that Gamma(i) calculated from the ionic temperature and density reflects the degree of order in the system if it is sufficiently close to a quasisteady state. At later times, however, the expansion of the plasma cloud becomes faster than the relaxation of correlations, and the system does not reach thermodynamic equilibrium anymore.

14.
Phys Rev Lett ; 94(6): 065503, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15783744

RESUMO

Neutral C60 is well known to exhibit a giant resonance in its photon absorption spectrum near 20 eV. This is associated with a surface plasmon, where delocalized electrons oscillate as a whole relative to the ionic cage. Absolute photoionization cross-section measurements for C+60, C2+60, and C3+60 ions in the 17-75 eV energy range show an additional resonance near 40 eV. Time-dependent density functional calculations confirm the collective nature of this feature, which is characterized as a dipole-excited volume plasmon made possible by the special fullerene geometry.

15.
Phys Rev Lett ; 95(24): 243003, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16384373

RESUMO

Partial photoionization cross sections sigmaN(Egamma) and photoelectron angular distributions betaN(Egamma) were measured for the final ionic states He+ (N > 4) in the region between the N = 8 and N = 13 thresholds (Egamma > 78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various HeN(+) states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization.

16.
Phys Rev Lett ; 91(7): 070403, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12934998

RESUMO

A relation between the number of bound elementary excitations of an atomic Bose-Einstein condensate and the phase shift of elastically scattered atoms is derived. Within the Bogoliubov model of a weakly interacting Bose gas this relation is exact and generalizes Levinson's theorem. Specific features of the Bogoliubov model such as complex energy and continuum bound states are discussed and a numerical example is given.

17.
J Chem Phys ; 120(1): 26-30, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267257

RESUMO

We numerically compare the semiclassical "frozen Gaussian" Herman-Kluk propagator [Chem. Phys. 91, 27 (1984)] and the "thawed Gaussian" propagator put forward recently by Baranger et al. [J. Phys. A 34, 7227 (2001)] by studying the quantum dynamics in some nonlinear one-dimensional potentials. The reasons for the lack of long-time accuracy and norm conservation in the latter method are uncovered. We amend the thawed Gaussian propagator with a global harmonic approximation for the stability of the trajectories and demonstrate that this revised propagator is a true alternative to the Herman-Kluk propagator with similar accuracy.

18.
Phys Rev Lett ; 92(15): 155003, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15169292

RESUMO

We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation of the expanding laser-cooled plasma is studied, taking into account elastic as well as inelastic collisions. It is demonstrated that, depending on the initial conditions, the ionic component of the plasma may exhibit short-range order or even a superimposed long-range order resulting in concentric ion shells. In contrast to ionic plasmas confined in traps, the shell structures build up from the center of the plasma cloud rather than from the periphery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA