Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 38(1): 40-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841060

RESUMO

The goal of this study was to evaluate the specific contribution of individual UDP-glucuronosyltransferase (UGT) isoforms in the metabolism of buprenorphine (BUP) and norbuprenorphine (Nor-BUP), as well as the impact of their genetic variations. The glucuronidation of BUP and Nor-BUP was examined using human liver microsomes (HLMs) and heterologously expressed UGTs. The individual contribution of UGT isoforms was estimated using enzyme kinetic experiments combined with the relative activity factor (RAF). Phenotype-genotype relationships were investigated in a bank of 52 HLMs. Among the six hepatic UGT isoforms tested, UGT1A1, UGT1A3, and UGT2B7 metabolized BUP and Nor-BUP. Using the RAF approach, we found that UGT1A1 and UGT2B7 accounted for approximately 10 and 41% of BUP glucuronidation, respectively. Nor-BUP glucuronidation involved predominantly UGT1A3 (approximately 63%) and UGT1A1 (34%), whereas UGT2B7 had only a minor role. The UGT1A1 promoter (TA)(6/7)TAA mutation (UGT1A1*28) resulted in a 28% decrease of BUP glucuronidation V(max) in pooled HLMs but was not statistically associated with glucuronidation rate in 52 individual HLMs. The presence of the UGT2B7 promoter (G-842A) mutation resulted in higher BUP glucuronidation V(max) in pooled HLMs (+80% on average) and in a significant higher glucuronidation rate in noncarriers (but not in carriers) of the UGT1A1*28 allele (P = 0.0352). This study represents a functional basis for further clinical pharmacogenetic studies.


Assuntos
Buprenorfina/análogos & derivados , Buprenorfina/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/enzimologia , Polimorfismo Genético , Bancos de Tecidos , Biocatálise , Linhagem Celular , Ácido Glucurônico/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
2.
Biochem Pharmacol ; 73(3): 405-16, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17094951

RESUMO

Oxidative damage by non-steroidal anti-inflammatory drugs (NSAIDs) has been considered relevant to the occurrence of gastro-intestinal side-effects. In the case of chiral arylpropionate derivatives like ketoprofen (KPF), this mechanism has been evidenced for the R-enantiomer, especially when chiral inversion was observed, and lets us suppose the involvement of CoA conjugates. Glucose-6-phosphate dehydrogenase (G6PD) is the crucial enzyme to regenerate the GSH pool and maintain the intracellular redox potential. This enzyme is known to be down-regulated by palmitoyl-CoA thioester. We hypothesised then that G6PD is the target of carboxylic NSAIDs, via their CoA metabolites. We used molecular docking to localise a putative site in the human G6PD then we chose the Yeast orthologue, as the most suitable species to study experimentally the precise molecular interaction. KPF-CoA was effectively shown to bind covalently to the unique cysteine residue of the yeast enzyme. Binding was found to occur in the same site as palmitoyl-CoA. It was decreased in the presence of an allosteric inhibitor of G6PD, phospho(enol)pyruvate, and was not detected with G6PD of Leuconostoc mesenteroides, which does not possess the allosteric site. This site is distinct from the catalytic site, and probably allosteric, explaining the observed non-competitive inhibition of its activity by KPF-CoA. KPF-CoA was shown to induce the production of reactive oxygen species in Caco-2 cells, where its inhibition of G6PD activity was observed.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Coenzima A/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Cetoprofeno/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sequência de Aminoácidos , Células CACO-2 , Coenzima A/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Humanos , Cetoprofeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA