Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 18(12): e3001015, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332391

RESUMO

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Replicação Viral/fisiologia , Capsídeo/química , Capsídeo/fisiologia , Proteínas do Capsídeo/genética , Replicação do DNA/fisiologia , DNA Viral/metabolismo , Células HEK293 , HIV-1/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Simulação de Dinâmica Molecular , Nucleotídeos/metabolismo , Permeabilidade , Ácido Fítico/análise , Ácido Fítico/metabolismo , Vírion/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética
2.
Biophys J ; 121(21): 4229-4238, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36042696

RESUMO

The assembly and budding of newly formed human immunodeficiency virus-1 (HIV-1) particles occur at the plasma membrane of infected cells. Although the molecular basis for viral budding has been studied extensively, investigation of its spatiotemporal characteristics has been limited by the small dimensions (∼100 nm) of HIV particles and the fast kinetics of the process (a few minutes from bud formation to virion release). Here we applied ultra-fast atomic force microscopy to achieve real-time visualization of individual HIV-1 budding events from wild-type (WT) cell lines as well as from mutated lines lacking vacuolar protein sorting-4 (VPS4) or visceral adipose tissue-1 protein (VTA1). Using single-particle analysis, we show that HIV-1 bud formation follows two kinetic pathways (fast and slow) with each composed of three distinct phases (growth, stationary, decay). Notably, approximately 38% of events did not result in viral release and were characterized by the formation of short (rather than tall) particles that slowly decayed back into the cell membrane. These non-productive events became more abundant in VPS4 knockout cell lines. Strikingly, the absence of VPS4B, rather than VPS4A, increased the production of short viral particles, suggesting a role for VPS4B in earlier stages of HIV-1 budding than traditionally thought.


Assuntos
HIV-1 , ATPases Vacuolares Próton-Translocadoras , Humanos , HIV-1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Montagem de Vírus , Transporte Proteico , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33692202

RESUMO

The HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6 Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. These reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.ImportanceFor successful infection, the HIV-1 genome, which is enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism of HIV-1 uncoating is a pivotal question of long standing. Using atomic force microscopy to analyze individual HIV-1 cores during reverse transcription, we observe a reproducible pattern of stiffness spikes. These spikes were shown to be associated with distinct stages of the reverse transcription reaction. Our findings suggest that these reverse-transcription-induced alterations gradually prepared the core for uncoating at the right time and location in target cells.

4.
Retrovirology ; 18(1): 29, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563203

RESUMO

The viral capsid plays a key role in HIV-1 reverse transcription. Recent studies have demonstrated that the small molecule IP6 dramatically enhances reverse transcription in vitro by stabilizing the viral capsid. Reverse transcription results in marked changes in the biophysical properties of the capsid, ultimately resulting in its breakage and disassembly. Here we review the research leading to these advances and describe hypotheses for capsid-dependent HIV-1 reverse transcription and a model for reverse transcription-primed HIV-1 uncoating.


Assuntos
Capsídeo/metabolismo , HIV-1/genética , Transcrição Reversa , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos
5.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089694

RESUMO

The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed in a cone-shaped capsid shell that disassembles following cell entry via a process known as uncoating. During HIV-1 infection, the capsid is important for reverse transcription and entry of the virus into the target cell nucleus. The small molecule PF74 inhibits HIV-1 infection at early stages by binding to the capsid and perturbing uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. Here, we show, using atomic force microscopy (AFM), that binding of PF74 to recombinant capsid-like assemblies and to HIV-1 isolated cores stabilizes the capsid in a concentration-dependent manner. At a PF74 concentration of 10 µM, the mechanical stability of the core is increased to a level similar to that of the intrinsically hyperstable capsid mutant E45A. PF74 also prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores treated with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, and a cap-like structure dissociated from the narrow end of the core. Moreover, the internal coiled structure that was observed to form during reverse transcription in vitro persisted throughout the duration of the measurement (∼24 h). Our results provide direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice, thereby permitting reverse transcription while interfering with a late step in uncoating.IMPORTANCE The capsid-binding small molecule PF74 inhibits HIV-1 infection at early stages and perturbs uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. We recently introduced time-lapse atomic force microscopy to study the morphology and physical properties of HIV-1 cores during the course of reverse transcription. Here, we apply this AFM methodology to show that PF74 prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, but a cap-like structure dissociated from the narrow end of the core HIV-1. Our result provides direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice.


Assuntos
Antivirais/metabolismo , Capsídeo/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Indóis/metabolismo , Fenilalanina/análogos & derivados , Desenvelopamento do Vírus/efeitos dos fármacos , Capsídeo/fisiologia , Capsídeo/ultraestrutura , HIV-1/ultraestrutura , Microscopia de Força Atômica , Fenilalanina/metabolismo , Ligação Proteica , Transcrição Reversa/efeitos dos fármacos
6.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381579

RESUMO

The HIV-1 core consists of the viral genomic RNA and several viral proteins encased within a conical capsid. After cell entry, the core disassembles in a process termed uncoating. Although HIV-1 uncoating has been linked to reverse transcription of the viral genome in target cells, the mechanism by which uncoating is initiated is unknown. Using time-lapse atomic force microscopy, we analyzed the morphology and physical properties of isolated HIV-1 cores during the course of reverse transcription in vitro We found that, during an early stage of reverse transcription the pressure inside the capsid increases, reaching a maximum after 7 h. High-resolution mechanical mapping reveals the formation of a stiff coiled filamentous structure underneath the capsid surface. Subsequently, this coiled structure disappears, the stiffness of the capsid drops precipitously to a value below that of a pre-reverse transcription core, and the capsid undergoes partial or complete rupture near the narrow end of the conical structure. We propose that the transcription of the relatively flexible single-stranded RNA into a more rigid filamentous structure elevates the pressure within the core, which triggers the initiation of capsid disassembly.IMPORTANCE For successful infection, the HIV-1 genome, which is in the form of a single-stranded RNA enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism that triggers uncoating is a pivotal question of long standing. By using atomic force microscopy, we found that during reverse transcription the pressure inside the capsid increases until the internal stress exceeds the strength of the capsid structure and the capsid breaks open. The application of AFM technologies to study purified HIV-1 cores represents a new experimental platform for elucidating additional aspects of capsid disassembly and HIV-1 uncoating.


Assuntos
Capsídeo/metabolismo , HIV-1/genética , Transcrição Reversa , Desenvelopamento do Vírus , Pressão Atmosférica , Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Microscopia de Força Atômica , Imagem com Lapso de Tempo , Proteínas Virais/metabolismo , Vírion/genética
7.
Retrovirology ; 13: 17, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979152

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV-1) capsid is a self-assembled protein shell that contains the viral genome. During the stages between viral entry into a host cell and nuclear import of the viral DNA, the capsid dissociates in a process known as uncoating, which leads to the release of the viral genetic material. Mutations that alter the stability of the capsid affect the uncoating rate and impair HIV-1 infectivity. RESULTS: To gain further insight into the role of capsid stability during uncoating, we used atomic force spectroscopy to quantify the stiffness of the capsid. Empty in vitro assemblies of wild type (WT) and mutant recombinant HIV-1 capsid protein (CA) as well as isolated WT and mutant HIV-1 cores (i.e., filled capsids) were analyzed. We find that hyperstable CA mutant assemblies (A204C, A14C/E45C, E45A and E45A/R132T) are significantly stiffer than WT assemblies. However, the hardening effect of disulfide crosslinking (A204C and A14C/E45C) is lower than that of hydrophobic interactions (E45A and E45A/R132T). CONCLUSIONS: Our results demonstrate that mutations that increase the intrinsic stability of the HIV-1 capsid have an increased stiffness of their lattice.


Assuntos
Capsídeo/química , Fenômenos Químicos , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/química , Proteínas Mutantes/metabolismo , Proteína do Núcleo p24 do HIV/genética , HIV-1/genética , Microscopia de Força Atômica , Proteínas Mutantes/genética
8.
Retrovirology ; 10: 4, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23305456

RESUMO

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a "stiffness switch", a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. RESULTS: In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. CONCLUSIONS: This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.


Assuntos
HIV-1/patogenicidade , Vírion/patogenicidade , Internalização do Vírus , Humanos , Microscopia de Força Atômica , Modelos Biológicos , Proteínas da Matriz Viral/fisiologia , Vírion/química , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/fisiologia
9.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808653

RESUMO

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid 1,2 . Recent studies have shown that HIV- 1 cores enter the nucleus prior to capsid disassembly 3-5 . Interactions with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Suppressors of the mutants restored elasticity and rescued infectivity and nuclear entry. Elasticity was also reduced by treatment of cores with the capsid-targeting compound PF74 and the antiviral drug lenacapavir. Our results indicate that capsid elasticity is a fundamental property of the HIV-1 core that enables its passage through the nuclear pore complex, thereby facilitating infection. These results provide new insights into the mechanisms of HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.

10.
Viruses ; 14(3)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337055

RESUMO

Obtaining an understanding of the mechanism underlying the interrelations between the structure and function of HIV-1 is of pivotal importance. In previous decades, this mechanism was addressed extensively in a variety of studies using conventional approaches. More recently, atomic force microscopy, which is a relatively new technique with unique capabilities, has been utilized to study HIV-1 biology. Atomic force microscopy can generate high-resolution images at the nanometer-scale and analyze the mechanical properties of individual HIV-1 virions, virus components (e.g., capsids), and infected live cells under near-physiological environments. This review describes the working principles and various imaging and analysis modes of atomic force microscopy, and elaborates on its distinctive contributions to HIV-1 research in areas such as mechanobiology and the physics of infection.


Assuntos
HIV-1 , Microscopia de Força Atômica/métodos , Vírion
11.
Biophys J ; 100(10): 2530-8, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21575588

RESUMO

The tectorial membrane (TM) is an extracellular matrix of the cochlea whose prominent role in hearing has been demonstrated through mutation studies. The C1509G mutation of the Tecta gene, which encodes for the α-tectorin protein, leads to hearing loss. The heterozygote TM only attaches to the first row of outer hair cells (OHCs), and the homozygote TM does not attach to any OHCs. Here we measured the morphology and mechanical properties of wild-type, heterozygous, and homozygous Tecta TMs. Morphological analyses conducted with second- and third-harmonic imaging, scanning electron microscopy, and immunolabeling revealed marked changes in the collagen architecture and stereocilin-labeling patterns of the mutant TMs. The mechanical properties of the mutant TM were measured by force spectroscopy. Whereas the axial Young's modulus of the low-frequency (apical) region of Tecta mutant TM samples was similar to that of wild-type TMs, it significantly decreased in the basal region to a value approaching that found at the apex. Modeling simulations suggest that a reduced TM Young's modulus is likely to reduce OHC stereociliary deflection. These findings argue that the heterozygote C1509G mutation results in a lack of attachment of the TM to the OHCs, which in turn reduces both the overall number of OHCs that are involved in mechanotransduction and the degree of mechanotransduction exhibited by the OHCs that remain attached to the TM.


Assuntos
Proteínas da Matriz Extracelular/genética , Mutação/genética , Membrana Tectorial/metabolismo , Membrana Tectorial/ultraestrutura , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Colágenos Fibrilares/química , Proteínas Ligadas por GPI/genética , Genótipo , Heterozigoto , Homozigoto , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Mutantes , Proteínas/metabolismo , Coloração e Rotulagem
12.
Bioeng Transl Med ; 6(3): e10226, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589601

RESUMO

We hypothesize that the biomechanical properties of cells can predict their viability, with Young's modulus representing the former and cell sensitivity to ultrasound representing the latter. Using atomic force microscopy, we show that the Young's modulus stiffness measure is significantly lower for superficial cancer cells (squamous cell carcinomas and melanoma) compared with noncancerous keratinocyte cells. In vitro findings reveal a significant difference between cancerous and noncancerous cell viability at the four ultrasound energy levels evaluated, with different cell lines exhibiting different sensitivities to the same ultrasound intensity. Young's modulus correlates with cell viability (R 2 = 0.93), indicating that this single biomechanical property can predict cell sensitivity to ultrasound treatment. In mice, repeated ultrasound treatment inhibits tumor growth without damaging healthy skin tissue. Histopathological tumor analysis indicates ultrasound-induced focal necrosis at the treatment site. Our findings provide a strong rationale for developing ultrasound as a noninvasive selective treatment for superficial cancers.

13.
Biophys J ; 97(9): 2419-28, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19883584

RESUMO

The assembly and budding of a new virus is a fundamental step in retroviral replication. Yet, despite substantial progress in the structural and biochemical characterization of retroviral budding, the underlying physical mechanism remains poorly understood, particularly with respect to the mechanism by which the virus overcomes the energy barrier associated with the formation of high membrane curvature during viral budding. Using atomic force, fluorescence, and transmission electron microscopy, we find that both human immunodeficiency virus and Moloney murine leukemia virus remodel the actin cytoskeleton of their host. These actin-filamentous structures assemble simultaneously with or immediately after the beginning of budding, and disappear as soon as the nascent virus is released from the cell membrane. Analysis of sections of cryopreserved virus-infected cells by transmission electron microscopy reveals similar actin filament structures emerging from every nascent virus. Substitution of the nucleocapsid domain implicated in actin binding by a leucine-zipper domain results in the budding of virus-like particles without remodeling of the cell's cytoskeleton. Notably, viruses carrying the modified nucleocapsid domains bud more slowly by an order of magnitude compared to the wild-type. The results of this study show that retroviruses utilize the cell cytoskeleton to expedite their assembly and budding.


Assuntos
Actinas/química , Retroviridae/metabolismo , Actinas/metabolismo , Animais , Biofísica/métodos , Citoesqueleto/metabolismo , Produtos do Gene gag/metabolismo , HIV/metabolismo , Células HeLa , Humanos , Camundongos , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Vírus da Leucemia Murina de Moloney/metabolismo , Células NIH 3T3
14.
Biophys J ; 94(1): 320-6, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17827243

RESUMO

Retrovirus budding is a key step in the virus replication cycle. Nonetheless, very little is known about the underlying mechanism of budding, primarily due to technical limitations preventing visualization of bud formation in real time. Methods capable of monitoring budding dynamics suffer from insufficient resolution, whereas other methods, such as electron microscopy, do not have the ability to operate under physiological conditions. Here we applied atomic force microscopy to real-time visualization of individual Moloney murine leukemia virus budding events. By using a single-particle analysis approach, we were able to observe distinct patterns in budding that otherwise remain transparent. We find that bud formation follows at least two kinetically distinct pathways. The majority of virions (74%) are produced in a slow process (>45 min), and the remaining particles (26%) assemble via a fast process (<25 min). Interestingly, repetitive budding from the same site was seen to occur in only two locations. This finding challenges the hypothesis that viral budding occurs from distinct sites and suggests that budding is not restricted laterally. In this study, we established a method to monitor the fine dynamics of the virus budding process. Using this single-particle analysis to study mutated viruses will enable us to gain additional insight into the mechanisms of viral budding.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Força Atômica/métodos , Microscopia de Vídeo/métodos , Vírus da Leucemia Murina de Moloney/crescimento & desenvolvimento , Vírus da Leucemia Murina de Moloney/ultraestrutura , Replicação Viral/fisiologia , Sistemas Computacionais
15.
Biophys J ; 92(5): 1777-83, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17158573

RESUMO

After budding from the cell, human immunodeficiency virus (HIV) and other retrovirus particles undergo a maturation process that is required for their infectivity. During maturation, HIV particles undergo a significant internal morphological reorganization, changing from a roughly spherically symmetric immature particle with a thick protein shell to a mature particle with a thin protein shell and conical core. However, the physical principles underlying viral particle production, maturation, and entry into cells remain poorly understood. Here, using nanoindentation experiments conducted by an atomic force microscope (AFM), we report the mechanical measurements of HIV particles. We find that immature particles are more than 14-fold stiffer than mature particles and that this large difference is primarily mediated by the HIV envelope cytoplasmic tail domain. Finite element simulation shows that for immature virions the average Young's modulus drops more than eightfold when the cytoplasmic tail domain is deleted (930 vs. 115 MPa). We also find a striking correlation between the softening of viruses during maturation and their ability to enter cells, providing the first evidence, to our knowledge, for a prominent role for virus mechanical properties in the infection process. These results show that HIV regulates its mechanical properties at different stages of its life cycle (i.e., stiff during viral budding versus soft during entry) and that this regulation may be important for efficient infectivity. Our report of this maturation-induced "stiffness switch" in HIV establishes the groundwork for mechanistic studies of how retroviral particles can regulate their mechanical properties to affect biological function.


Assuntos
HIV/fisiologia , Fenômenos Biomecânicos , HIV/ultraestrutura , Humanos , Microscopia de Força Atômica/métodos
16.
Nat Commun ; 7: 10714, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940118

RESUMO

The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.


Assuntos
Proteínas do Capsídeo/metabolismo , Ciclofilina A/farmacologia , Regulação Viral da Expressão Gênica/fisiologia , Domínio Catalítico , Simulação por Computador , Escherichia coli/metabolismo , HIV-1 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Montagem de Vírus
18.
PLoS One ; 9(10): e109089, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337801

RESUMO

Unique features of diatoms are their intricate cell covers (frustules) made out of hydrated, amorphous silica. The frustule defines and maintains cell shape and protects cells against grazers and pathogens, yet it must allow for cell expansion during growth and division. Other siliceous structures have also evolved in some chain-forming species as means for holding neighboring cells together. Characterization and quantification of mechanical properties of these structures are crucial for the understanding of the relationship between form and function in diatoms, but thus far only a handful of studies have addressed this issue. We conducted micro-indentation experiments, using atomic force microscopy (AFM), to examine local variations in elastic (Young's) moduli of cells and linking structures in the marine, chain-forming diatom Lithodesmium undulatum. Using a fluorescent tracer that is incorporated into new cell wall components we tested the hypothesis that new siliceous structures differ in elastic modulus from their older counterparts. Results show that the local elastic modulus is a highly dynamic property. Elastic modulus of stained regions was significantly lower than that of unstained regions, suggesting that newly formed cell wall components are generally softer than the ones inherited from the parent cells. This study provides the first evidence of differentiation in local elastic properties in the course of the cell cycle. Hardening of newly formed regions may involve incorporation of additional, possibly organic, material but further studies are needed to elucidate the processes that regulate mechanical properties of the frustule during the cell cycle.


Assuntos
Diferenciação Celular , Divisão Celular/genética , Parede Celular/ultraestrutura , Parede Celular/metabolismo , Elasticidade , Fenômenos Mecânicos , Microscopia de Força Atômica , Salinidade
19.
J Virol Methods ; 169(1): 244-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20691213

RESUMO

Elucidating the structure of the immature HIV-1 Gag core is an important aspect of understanding the biology of this virus. In doing so, preservation of the fragile Gag lattice is essential. In this study, the effects of purification methods on the structural and mechanical integrity of immature HIV-1 are examined. The results show that the morphological and mechanical properties of the virion are preserved to a significantly higher degree by Iodixanol (OptiPrep) purification compared to the standard sucrose method. In conclusion, these results indicate that OptiPrep instead of sucrose purification should be employed when conducting structural studies on the HIV-1 virion.


Assuntos
HIV-1/isolamento & purificação , Ultracentrifugação/métodos , Virologia/métodos , Animais , Microscopia Crioeletrônica , HIV-1/química , HIV-1/ultraestrutura , Sacarose , Ácidos Tri-Iodobenzoicos , Vírion/química , Vírion/isolamento & purificação , Vírion/ultraestrutura
20.
J Struct Biol ; 159(1): 103-10, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17467292

RESUMO

The tectorial membrane (TM) is a highly hydrated non-cellular matrix situated over the sensory cells of the cochlea. It is widely accepted that the mechanical coupling, between the TM and outer hair cells stereocilia bundles, plays an important role in the cochlea energy transduction mechanism. Recently, we provided supporting evidence for the existence of mechanical coupling by demonstrating that the mechanical properties of the TM change along its longitudinal direction. Since the biochemical composition of the TM is similar throughout its entire length, it is likely that structural differences induce the observed material properties changes. Presently, however, the structure of the TM under physiological environments remains unknown. In this work, the 3D structure of native TM samples is shown by using two-photon second-harmonic imaging microscopy. We find that the collagen fibers at the basal region are arranged in a parallel orientation while being tilted in an angle with respect to the plane of the TM surface at the apical region. Moreover, we find an intensified marginal band at the basal OHC zone which forms a shell-like structure which engulfs the stereocilium imprints surface of the TM. In supports of our previous mechanical characterization, the analysis presented here provides a structural basis for the changes in TM's mechanical properties.


Assuntos
Imageamento Tridimensional , Microscopia/métodos , Membrana Tectorial/química , Animais , Membrana Basilar , Colágeno/química , Células Ciliadas Auditivas , Mecanotransdução Celular , Camundongos , Membrana Tectorial/fisiologia , Membrana Tectorial/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA