Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 209(1): 107426, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733279

RESUMO

We describe a semiautomated approach to segment Env spikes from the membrane envelope of Simian Immunodeficiency Virus visualized by cryoelectron tomography of frozen-hydrated specimens. Multivariate data analysis is applied to a large set of overlapping subvolumes extracted semiautomatically from the viral envelope and does not utilize a template of the target structure. The major manual step used in the method involves determination of six points that define an ellipsoid approximating the virion shape. The approach is robust to departures of the actual virion from this starting ellipsoid. A point cage of sufficient density is generated to ensure that any spike-like protein is identified multiple times. Subsequently translational alignment of class averages to a cylindrical reference on a curved surface separates subvolumes with spikes from those without. Spike containing subvolumes identified multiple times are removed by proximity analysis. Slightly different procedures segment spikes in the equatorial and the polar regions. Once all spikes are segmented, further alignment of class averages using separately the polar and spin angles produces recognizable spike images. Our approach localized 96% of the equatorial spikes and 85% of all spikes identified manually; it identifies a significant number of additional spikes missed by manual selection. Two types of spike shapes were segmented, one with near 3-fold symmetry resembling the conventional spike, the other had a T-shape resembling the spike structure obtained when antibodies such as PG9 bind to HIV Env. The approach should be applicable to segmentation of any protein spikes extending from a cellular or virion envelope.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Envelope Viral/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Algoritmos , Tomografia com Microscopia Eletrônica/métodos , HIV-1/química , Vírus da Imunodeficiência Símia/química , Envelope Viral/classificação , Proteínas Virais/química , Vírion/química
2.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539445

RESUMO

The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states.IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Antígenos CD4/química , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos CD4/metabolismo , Tomografia com Microscopia Eletrônica , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas do Envelope Viral/metabolismo
3.
J Allergy Clin Immunol ; 139(1): 281-289.e5, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343203

RESUMO

BACKGROUND: The low-affinity receptor for IgE, FcεRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration. OBJECTIVE: We sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level. METHODS: We expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed. RESULTS: A hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non-N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcεRI, also inhibited IgE binding to CD23. CONCLUSION: Our results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab.


Assuntos
Antígenos de Plantas/imunologia , Imunoglobulina E/imunologia , Receptores de IgE/imunologia , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Insetos , Omalizumab/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de IgE/química
4.
J Allergy Clin Immunol ; 137(5): 1557-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26684291

RESUMO

BACKGROUND: IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. OBJECTIVE: To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. METHODS: We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. RESULTS: We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. CONCLUSIONS: Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex-mediated diseases.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Epitopos/imunologia , Imunoglobulina E/imunologia , Alérgenos/genética , Alérgenos/imunologia , Anafilaxia/imunologia , Animais , Camundongos Endogâmicos BALB C , Mioglobina/genética , Mioglobina/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas Recombinantes/imunologia
5.
J Virol ; 88(21): 12265-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122783

RESUMO

UNLABELLED: The gp120 portion of the envelope spike on human immunodeficiency virus type 1 (HIV-1) plays a critical role in viral entry into host cells and is a key target for the humoral immune response, and yet many structural details remain elusive. We have used cryoelectron tomography to visualize the binding of the broadly neutralizing monoclonal antibody (MAb) 447-52D to intact envelope spikes on virions of HIV-1 MN strain. Antibody 447-52D has previously been shown to bind to the tip of the V3 loop. Our results show antibody arms radiating from the sides of the gp120 protomers at a range of angles and place the antibody-bound V3 loop in an orientation that differs from that predicted by most current models but consistent with the idea that antibody binding dislodges the V3 loop from its location in the Env spike, making it flexible and disordered. These data reveal information on the position of the V3 loop and its relative flexibility and suggest that 447-52D neutralizes HIV-1 MN by capturing the V3 loop, blocking its interaction with the coreceptor and altering the structure of the envelope spike. IMPORTANCE: Antibody neutralization is one of the primary ways that the body fights infection with HIV. Because HIV is a highly mutable virus, the body must constantly produce new antibodies to counter new strains of HIV that the body itself is producing. Consequently, antibodies capable of neutralizing multiple HIV strains are comparatively few. An improved understanding of the mechanism of antibody neutralization might advance the development of immunogens. Most neutralizing antibodies target the Env glycoprotein spikes found on the virus surface. The broadly neutralizing antibody 447-52D targets the highly conserved ß-turn of variable loop 3 (V3) of gp120. The importance of V3 lies in its contribution to the coreceptor binding site on the target cell. We show here that 447-52D binding to V3 converts the Env conformation from closed to open and makes the V3 loop highly flexible, implying disruption of coreceptor binding and attachment to the target cell.


Assuntos
Tomografia com Microscopia Eletrônica , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Substâncias Macromoleculares/ultraestrutura , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Microscopia Crioeletrônica , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Modelos Moleculares
6.
J Immunol ; 191(6): 3221-31, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23956431

RESUMO

New influenza A viruses with pandemic potential periodically emerge due to viral genomic reassortment. In the face of pandemic threats, production of conventional egg-based vaccines is time consuming and of limited capacity. We have developed in this study a novel DNA vaccine in which viral hemagglutinin (HA) is bivalently targeted to MHC class II (MHC II) molecules on APCs. Following DNA vaccination, transfected cells secreted vaccine proteins that bound MHC II on APCs and initiated adaptive immune responses. A single DNA immunization induced within 8 d protective levels of strain-specific Abs and also cross-reactive T cells. During the Mexican flu pandemic, a targeted DNA vaccine (HA from A/California/07/2009) was generated within 3 wk after the HA sequences were published online. These results suggest that MHC II-targeted DNA vaccines could play a role in situations of pandemic threats. The vaccine principle should be extendable to other infectious diseases.


Assuntos
Hemaglutininas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vacinas contra Influenza/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/imunologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Pandemias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espanha/epidemiologia , Transfecção
7.
Methods ; 66(1): 34-43, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911839

RESUMO

Allergic reactions to tree nuts are a growing global concern as the number of affected individuals continues to rise. Unlike some food allergies, tree nuts can cause severe reactions that persist throughout life. The tree nuts discussed in this review include those most commonly responsible for allergic reactions: cashew, almond, hazelnut, walnut, pecan, Brazil nut, pistachio, and chestnut. The native allergenic proteins derived from tree nuts are frequently difficult to isolate and purify and may not be adequately represented in aqueous nut protein extracts. Consequently, defined recombinant allergens have become useful reagents in a variety of immunoassays aimed at the diagnosis of tree nut allergy, assessing cross-reactivity between various nuts and other seeds, mapping of IgE binding epitopes, and analyzing the effects of the food matrix, food processing, and gastric digestion on allergenicity. This review describes the approaches that can be used for the production of recombinant tree nut allergens and addresses key issues associated with their production and downstream applications.


Assuntos
Alérgenos/imunologia , Hipersensibilidade a Noz/imunologia , Nozes/imunologia , Proteínas de Plantas/imunologia , Alérgenos/biossíntese , Alérgenos/genética , Animais , Clonagem Molecular , Humanos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
8.
Methods ; 66(1): 106-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24161540

RESUMO

Allergy diagnosis based on purified allergen molecules provides detailed information regarding the individual sensitization profile of allergic patients, allows monitoring of the development of allergic disease and of the effect of therapies on the immune response to individual allergen molecules. Allergen microarrays contain a large variety of allergen molecules and thus allow the simultaneous detection of allergic patients' antibody reactivity profiles towards each of the allergen molecules with only minute amounts of serum. In this article we summarize recent progress in the field of allergen microarray technology and introduce the MeDALL allergen-chip which has been developed for the specific and sensitive monitoring of IgE and IgG reactivity profiles towards more than 170 allergen molecules in sera collected in European birth cohorts. MeDALL is a European research program in which allergen microarray technology is used for the monitoring of the development of allergic disease in childhood, to draw a geographic map of the recognition of clinically relevant allergens in different populations and to establish reactivity profiles which are associated with and predict certain disease manifestations. We describe technical advances of the MeDALL allergen-chip regarding specificity, sensitivity and its ability to deliver test results which are close to in vivo reactivity. In addition, the usefulness and numerous advantages of allergen microarrays for allergy research, refined allergy diagnosis, monitoring of disease, of the effects of therapies, for improving the prescription of specific immunotherapy and for prevention are discussed.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/diagnóstico , Análise Serial de Proteínas , Adolescente , Animais , Calibragem , Criança , Pré-Escolar , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoterapia , Melhoria de Qualidade , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
9.
J Virol ; 86(3): 1820-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22090143

RESUMO

The broadly neutralizing monoclonal antibodies (MAbs) 4E10, 2F5, and Z13e1 target membrane-proximal external region (MPER) epitopes of HIV-1 gp41 in a manner that remains controversial. The requirements for initial lipid bilayer binding and/or CD4 ligation have been proposed. To further investigate these issues, we probed for binding of these MAbs to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. We found moderate levels of PAG associated with unliganded HIV-1 and SIV virions incubated with the three MAbs. Significantly higher levels of PAG were associated with CD4-liganded HIV-1 (epitope-positive) but not SIV (epitope-negative) virions. A chimeric SIV virion displaying the HIV-1 4E10 epitope also showed significantly higher PAG association after CD4 ligation and incubation with 4E10. MAbs accumulated rapidly on CD4-liganded virions and slowly on unliganded virions, although both reached similar levels in time. Anti-MPER epitope-specific binding was stable to washout. Virions incubated with an irrelevant MAb or CD4-only (no MAb) showed negligible PAG association, as did a vesicle-rich fraction devoid of virions. Preincubation with Fab 4E10 inhibited both specific and nonspecific 4E10 IgG binding. Our data provide evidence for moderate association of anti-MPER MAbs to viral surfaces but not lipid vesicles, even in the absence of cognate epitopes. Significantly greater MAb interaction occurs in epitope-positive virions following long incubation or CD4 ligation. These findings are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD4/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírion/imunologia , Sítios de Ligação de Anticorpos , Ligantes , Microscopia Eletrônica
10.
J Virol ; 85(6): 2741-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191026

RESUMO

We have used cryoelectron tomography of vitreous-ice-embedded HIV-1 virions to compare the envelope (Env) spikes of a wild-type strain with those of a mutant strain in which the V1/V2 loop has been deleted. Deletion of V1/V2 results in a spike with far more structural heterogeneity than is observed in the wild type, likely reflecting greatly enhanced gp120 protomer flexibility. A major difference between the two forms is a pronounced loss of mass from the "peak" of the native Env spike. The apparent loss of contact among three gp120 protomers likely accounts for the more open structure, heterogeneity in configuration, and previous observations that broadly neutralizing epitopes and reactive sites on other structural elements are more exposed in such constructs.


Assuntos
Proteína gp120 do Envelope de HIV/ultraestrutura , HIV-1/ultraestrutura , Microscopia Crioeletrônica , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , HIV-1/química , HIV-1/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestrutura , Deleção de Sequência
11.
Nature ; 441(7095): 847-52, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16728975

RESUMO

Envelope glycoprotein (Env) spikes on AIDS retroviruses initiate infection of host cells and are therefore targets for vaccine development. Though crystal structures for partial Env subunits are known, the structure and distribution of native Env spikes on virions is obscure. We applied cryoelectron microscopy tomography to define ultrastructural details of spikes. Virions of wild-type human immunodeficiency virus 1 (HIV-1) and a mutant simian immunodeficiency virus (SIV) had approximately 14 and approximately 73 spikes per particle, respectively, with some clustering of HIV-1 spikes. Three-dimensional averaging showed that the surface glycoprotein (gp120) 'head' of each subunit of the trimeric SIV spike contains a primary mass, with two secondary lobes. The transmembrane glycoprotein 'stalk' of each trimer is composed of three independent legs that project obliquely from the trimer head, tripod-like. Reconciling available atomic structures with the three-dimensional whole spike density map yields insights into the orientation of Env spike structural elements and possible structural bases of their functions.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/ultraestrutura , HIV-1/química , HIV-1/ultraestrutura , Síndrome da Imunodeficiência Adquirida/virologia , Microscopia Crioeletrônica , Glicoproteínas/química , Glicoproteínas/ultraestrutura , HIV-1/genética , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Vírus da Imunodeficiência Símia/química , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/ultraestrutura , Relação Estrutura-Atividade , Tomografia
12.
Anal Chem ; 83(18): 7129-36, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21861454

RESUMO

The epitopes of a homohexameric food allergen protein, cashew Ana o 2, identified by two monoclonal antibodies, 2B5 and 1F5, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and the results were compared to previous mapping by immunological and mutational analyses. Antibody 2B5 defines a conformational epitope, and 1F5 defines a linear epitope. Intact murine IgG antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen-monoclonal antibody (Ag-mAb) complexes. mAb-complexed and uncomplexed (free) rAna o 2 were then subjected to HDX. HDX instrumentation and automation were optimized to achieve high sequence coverage by protease XIII digestion. The regions protected from H/D exchange upon antibody binding overlap and thus confirm the previously identified epitope-bearing segments: the first extension of HDX monitored by mass spectrometry to a full-length antigen-antibody complex in solution.


Assuntos
Amidas/química , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/química , Antígenos de Plantas/química , Mapeamento de Epitopos/métodos , Espectrometria de Massas/métodos , Complexo Antígeno-Anticorpo/imunologia , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Ciclotrons , Deutério/química , Medição da Troca de Deutério/métodos , Análise de Fourier , Hidrogênio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
13.
Int Arch Allergy Immunol ; 156(3): 267-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720172

RESUMO

BACKGROUND: IgE-reactive proteins have been identified in almond; however, few have been cloned and tested for specific patient IgE reactivity. Here, we clone and express prunin 1 and prunin 2, isoforms of the major almond protein prunin, an 11S globulin, and assay each for IgE reactivity. METHODS: Prunin isoforms were PCR-amplified from an almond cDNA library, sequenced, cloned and expressed in Escherichia coli. Reactivity to the recombinant (r) allergens, Pru du 6.01 and Pru du 6.02, was screened by dot blot and immunoblot assays using sera from almond-allergic patients and murine monoclonal antibodies (mAbs). Sequential IgE-binding epitopes were identified by solid-phase overlapping peptide analysis. Epitope stability was assessed by assaying denatured recombinant proteins by immunoblot. RESULTS: IgE reactivity to rPru du 6.01 and rPru du 6.02 was found in 9 of 18 (50%) and 5 of 18 patients (28%), respectively. Four patients (22%) demonstrated reactivity to both isoforms. Murine anti-almond IgG mAbs also showed greater reactivity to rPru du 6.01 than to rPru du 6.02. Both stable and labile epitopes were detected. Six IgE-binding sequential epitope-bearing peptide segments on Pru du 6.01 and 8 on Pru du 6.02 were detected using pooled almond-allergic sera. CONCLUSIONS: rPru du 6.01 is more widely recognized than rPru du 6.02 in our patient population. The identification of multiple sequential epitopes and the observation that treatment with denaturing agents had little effect on IgE-binding intensity in some patients suggests an important role for sequential epitopes on prunins.


Assuntos
Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Imunoglobulina E/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Adolescente , Adulto , Alérgenos/química , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Plantas/biossíntese , Sequência de Bases , Criança , Clonagem Molecular , Epitopos/imunologia , Escherichia coli/genética , Feminino , Hipersensibilidade Alimentar , Globulinas/genética , Globulinas/imunologia , Humanos , Imunoglobulina E/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas de Plantas/química , Ligação Proteica , Prunus/genética , Prunus/imunologia , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA
14.
J Immunol ; 182(8): 4817-29, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342660

RESUMO

IgE is a central molecule in allergic disease. We have isolated cDNAs coding for the heavy and light chains of a murine mAb specific to human IgE and expressed a recombinant single-chain variable fragment (ScFv) derived thereof in Escherichia coli. The purified recombinant ScFv has a molecular mass of 28 kDa as measured by mass spectrometry and shows a beta-sheet fold as determined by circular dichroism. In biosensor-based studies it was demonstrated that the ScFv rapidly and stably binds to human IgE with an affinity of K(D) of 1.52 x 10(-10) M, which is almost as high as the affinity of IgE for FcepsilonRI, and that the ScFv is able to recognize FcepsilonRI-bound IgE and to prevent IgE binding to FcepsilonRI. The ScFv reacts specifically with IgE but not with other isotypes, allows the measurement of allergen-specific IgE in serum samples, and specifically targets cells that contain FcepsilonRI- or FcepsilonRII-bound IgE or that secrete IgE. Using negative-stain electron microscopy we demonstrated the formation of bimolecular complexes consisting of two ScFv molecules and one IgE and trimolecular complexes consisting of IgE, FcepsilonRI, and ScFv in which only one ScFv is able to bind to IgE. Accordingly, we found that the ScFv does not cross-link basophil-bound IgE and hence does not induce histamine release or activation of basophils as demonstrated by FACS analysis of CD203c expression and by histamine release experiments. In vivo skin testing confirmed the lack of allergenic activity of the ScFv. The recombinant ScFv may represent a universal tool for the IgE-targeted treatment of allergies.


Assuntos
Anafilaxia/imunologia , Imunoglobulina E/biossíntese , Fragmentos Fab das Imunoglobulinas/biossíntese , Alérgenos/imunologia , Sequência de Aminoácidos , Anafilaxia/genética , Anafilaxia/metabolismo , Animais , Sequência de Bases , Basófilos/imunologia , Dicroísmo Circular , Humanos , Imunoglobulina E/genética , Imunoglobulina E/metabolismo , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos de Imunoglobulinas , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Ligação Proteica/genética , Ligação Proteica/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 105(6): 2040-5, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18238899

RESUMO

Adaptive immunity in jawless vertebrates (lamprey and hagfish) is mediated by lymphocytes that undergo combinatorial assembly of leucine-rich repeat (LRR) gene segments to create a diverse repertoire of variable lymphocyte receptor (VLR) genes. Immunization with particulate antigens induces VLR-B-bearing lymphocytes to secrete antigen-specific VLR-B antibodies. Here, we describe the production of recombinant VLR-B antibodies specific for BclA, a major coat protein of Bacillus anthracis spores. The recombinant VLR-B antibodies possess 8-10 uniform subunits that collectively bind antigen with high avidity. Sequence analysis, mutagenesis, and modeling studies show that antigen binding involves residues in the beta-sheets lining the VLR-B concave surface. EM visualization reveals tetrameric and pentameric molecules having a central core and highly flexible pairs of stalk-region "arms" with antigen-binding "hands." Remarkable antigen-binding specificity, avidity, and stability predict that these unusual LRR-based monoclonal antibodies will find many biomedical uses.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Antígenos/imunologia , Linhagem Celular , Dimerização , Humanos , Lampreias , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
16.
PLoS Pathog ; 4(11): e1000203, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008954

RESUMO

A detailed understanding of the morphology of the HIV-1 envelope (Env) spike is key to understanding viral pathogenesis and for informed vaccine design. We have previously presented a cryoelectron microscopic tomogram (cryoET) of the Env spikes on SIV virions. Several structural features were noted in the gp120 head and gp41 stalk regions. Perhaps most notable was the presence of three splayed legs projecting obliquely from the base of the spike head toward the viral membrane. Subsequently, a second 3D image of SIV spikes, also obtained by cryoET, was published by another group which featured a compact vertical stalk. We now report the cryoET analysis of HIV-1 virion-associated Env spikes using enhanced analytical cryoET procedures. More than 2,000 Env spike volumes were initially selected, aligned, and sorted into structural classes using algorithms that compensate for the "missing wedge" and do not impose any symmetry. The results show varying morphologies between structural classes: some classes showed trimers in the head domains; nearly all showed two or three legs, though unambiguous three-fold symmetry was not observed either in the heads or the legs. Subsequently, clearer evidence of trimeric head domains and three splayed legs emerged when head and leg volumes were independently aligned and classified. These data show that HIV-1, like SIV, also displays the tripod-like leg configuration, and, unexpectedly, shows considerable gp41 leg flexibility/heteromorphology. The tripod-like model for gp41 is consistent with, and helps explain, many of the unique biophysical and immunological features of this region.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , HIV-1/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura , Proteína gp120 do Envelope de HIV , Proteína gp41 do Envelope de HIV , HIV-1/química , Maleabilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
17.
Curr Opin Struct Biol ; 17(2): 244-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395457

RESUMO

The envelope (Env) spikes on HIV-1 and closely related SIV define the viral tropism, mediate the fusion process and are the prime target of the humoral response. Despite intensive efforts, Env has been slow to reveal its structural and functional secrets. Three gp120 subunits comprise the 'head' of Env and three gp41 subunits comprise the 'stalk' and other membrane-associated elements. The recent description of the core structure of unliganded (untriggered) gp120, compared to earlier CD4-liganded atomic structures, reveals dramatic conformational reorganization of the components and suggests a mechanism for the initiation of fusion. The structure of the key V3 loop, both in isolation and in association with the liganded core, helps define its role in fusion and as a prime target of neutralizing antibodies. Additional details are emerging regarding the structure of gp41 as it transitions from the preliganded configuration to the fusion intermediate (fusion-active or prehairpin intermediate) configuration, although much remains speculative. Recent advances in cryoelectron tomography are giving us the first glimpses of the overall three-dimensional structure of Env, which, when fitted with the available component atomic structures, provides new insights into the organization of the structural elements within the trimeric spike.


Assuntos
Produtos do Gene env/química , HIV-1/química , Microscopia Crioeletrônica , Produtos do Gene env/fisiologia , Produtos do Gene env/ultraestrutura , HIV-1/patogenicidade , HIV-1/fisiologia , HIV-1/ultraestrutura , Fusão de Membrana , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Estrutura Terciária de Proteína , Vírus da Imunodeficiência Símia/química
18.
J Struct Biol ; 165(2): 64-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19032983

RESUMO

Electron tomography is a technique for three-dimensional reconstruction, that is widely used for imaging macromolecules, macromolecular assemblies or whole cells. Combined with cryo-electron microscopy, it is capable of visualizing structural detail in a state close to in vivo conditions in the cell. In electron tomography, micrographs are taken while tilting the specimen to different angles about a fixed axis. Due to mechanical constraints, the angular tilt range is limited. As a consequence, the reconstruction of a 3D image is missing data, which for a single axis tilt series is called the "missing wedge", a region in reciprocal space where Fourier coefficients cannot be obtained experimentally. Tomographic data is analyzed by extracting subvolumes from the raw tomograms, by alignment of the extracted subvolumes, multivariate data analysis, classification, and class-averaging, which results in an increased signal-to-noise ratio and substantial data reduction. Subvolume analysis is a valuable tool to discriminate heterogeneous populations of macromolecules, or conformations of a macromolecule or macromolecular assembly as well as to characterize interactions between macromolecules. However, this analysis is hampered by the lack of data in the original tomograms caused by the missing wedge. Here, we report enhancements of our subvolume processing protocols in which the problem of the missing data in reciprocal space is addressed by using constrained correlation and weighted averaging in reciprocal space. These procedures are applied to the analysis of myosin V and simian immunodeficiency virus (SIV) envelope spikes. We also investigate the effect of the missing wedge on image classification and establish limits of reliability by model calculations with generated phantoms.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Miosina Tipo V/química , Tomografia/métodos , Animais , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Insetos , Lipídeos/química , Conformação Molecular , Músculos/metabolismo , Análise de Componente Principal , Reprodutibilidade dos Testes , Vírus da Imunodeficiência Símia/metabolismo , Proteínas Virais/química
19.
Int Arch Allergy Immunol ; 150(1): 8-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19339797

RESUMO

BACKGROUND: The silkworm, Bombyx mori, is an important insect in the textile industry and its pupa are used in Chinese cuisine and traditional Chinese medicine. The silk, urine and dander of silkworms is often the cause of allergies in sericulture workers and the pupa has been found to be a food allergen in China. Recent studies have focused on reporting cases of silkworm allergies, but only a few studies have addressed the specific allergens present in the B. mori silkworm. METHODS: We collected sera from 10 patients with a positive skin prick test to silkworm crude extract (SCE) and analyzed these samples by Western blot and ELISA. The cDNA of arginine kinase from the B. mori silkworm was also cloned and expressed in high yield in Escherichia coli. Allergenicity and cross-allergenicity of the recombinant B. mori arginine kinase (rBmAK) were investigated by ELISA inhibition assay. RESULTS: Collected sera all reacted to a 42-kDa protein in a Western blot with SCE as the antigen. Preincubation of sera with rBmAK eliminated the reactivity of the patients' sera to this 42-kDa band. All patient sera also exhibited positive reactivity to SCE in an ELISA assay. BmAK also demonstrated cross-reactivity with a recombinant AK from cockroach. CONCLUSION: Arginine kinase from the B. mori silkworm is a major allergen and crossreacts with cockroach AK.


Assuntos
Alérgenos/imunologia , Arginina Quinase/imunologia , Bombyx/genética , Bombyx/imunologia , Genes de Insetos , Proteínas de Insetos/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Arginina Quinase/genética , Western Blotting , Bombyx/enzimologia , Criança , Baratas/enzimologia , Baratas/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Proteínas de Insetos/metabolismo , Larva , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Testes Cutâneos , Adulto Jovem
20.
AIDS Res Hum Retroviruses ; 24(2): 301-14, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18284327

RESUMO

Immunization studies with modified gp120 monomers using a hyperglycosylation strategy, in which undesired epitopes are masked by the selective incorporation of N-linked glycans, were described in a previous paper (Selvarajah S, et al., J Virol 2000;79:12148-12163). In this report, we applied the hyperglycosylation strategy to soluble uncleaved gp140 trimers to improve the antigenic and immunogenic profile in the context of a trimeric conformation of the immunogen. The JR-FL gp140 gene was added upstream of a soluble trimerization domain of chicken cartilage matrix (CART) protein and expressed predominantly as a trimer and called gp140-CART wild-type. In the hyperglycosylated gp140-CART mCHO(V) mutant, four extra sugar attachment motifs on the variable loops helped mask epitope recognition by monoclonal antibodies specific to the variable loops. The gp140-CART mCHO(V) mutant and gp140-CART wild-type soluble trimer protein were used to immunize rabbits. The gp140-CART mCHO(V) immune sera had reduced antibody response to the variable loops compared to gp140-CART wild-type immune sera as shown by peptide reactivity, competition assays, and the reduced ability of sera to neutralize SF162 virus (a variable loop neutralization-sensitive virus). The antibody response to the CD4 binding site was retained in the gp140-CART mCHO(V) mutant immune sera similar to gp140-CART wild-type immune sera. The results demonstrate that the strategy of hyperglycosylation is clearly useful in the context of a compact form of Env immunogen such as the soluble gp140 trimer in dampening responses to variable loops while maintaining responses to an important epitope, the CD4 binding site. However, the results also show that in order to elicit broadly neutralizing antibodies that target conserved epitopes, the soluble gp140 trimer immunogen template will require further modifications.


Assuntos
Epitopos de Linfócito B/imunologia , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Glicosilação , HIV/genética , Humanos , Microscopia Eletrônica de Transmissão , Testes de Neutralização , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA