RESUMO
Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.
Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por SubstratoRESUMO
The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipídeos , PermeabilidadeRESUMO
Exceptionally preserved fossils provide crucial insights into extinct body plans and organismal evolution. Molluscs, one of the most disparate animal phyla, radiated rapidly during the early Cambrian period (approximately 535-520 million years ago (Ma)). The problematic fossil taxa Halkieria and Orthrozanclus (grouped in Sachitida) have been assigned variously to stem-group annelids, brachiopods, stem-group molluscs or stem-group aculiferans (Polyplacophora and Aplacophora), but their affinities have remained controversial owing to a lack of preserved diagnostic characters. Here we describe a new early sachitid, Calvapilosa kroegeri gen. et sp. nov. from the Fezouata biota of Morocco (Early Ordovician epoch, around 478 Ma). The new taxon is characterized by the presence of a single large anterior shell plate and polystichous radula bearing a median tooth and several lateral and uncinal teeth in more than 125 rows. Its flattened body is covered by hollow spinose sclerites, and a smooth, ventral girdle flanks an extensive mantle cavity. Phylogenetic analyses resolve C. kroegeri as a stem-group aculiferan together with other single-plated forms such as Maikhanella (Siphogonuchites) and Orthrozanclus; Halkieria is recovered closer to the aculiferan crown. These genera document the stepwise evolution of the aculiferan body plan from forms with a single, almost conchiferan-like shell through two-plated taxa such as Halkieria, to the eight-plated crown-group aculiferans. C. kroegeri therefore provides key evidence concerning the long debate about the crown molluscan affinities of sachitids. This new discovery strongly suggests that the possession of only a single calcareous shell plate and the presence of unmineralised sclerites are plesiomorphic (an ancestral trait) for the molluscan crown.
Assuntos
Fósseis , Moluscos/anatomia & histologia , Moluscos/classificação , Filogenia , Exoesqueleto/anatomia & histologia , Animais , Teorema de Bayes , Marrocos , Dente/anatomia & histologiaRESUMO
BACKGROUND: Over the 70 years since the introduction of plastic into everyday items, plastic waste has become an increasing problem. With over 360 million tonnes of plastics produced every year, solutions for plastic recycling and plastic waste reduction are sorely needed. Recently, multiple enzymes capable of degrading PET (polyethylene terephthalate) plastic have been identified and engineered. In particular, the enzymes PETase and MHETase from Ideonella sakaiensis depolymerize PET into the two building blocks used for its synthesis, ethylene glycol (EG) and terephthalic acid (TPA). Importantly, EG and TPA can be re-used for PET synthesis allowing complete and sustainable PET recycling. RESULTS: In this study we used Saccharomyces cerevisiae, a species utilized widely in bioindustrial fermentation processes, as a platform to develop a whole-cell catalyst expressing the MHETase enzyme, which converts monohydroxyethyl terephthalate (MHET) into TPA and EG. We assessed six expression architectures and identified those resulting in efficient MHETase expression on the yeast cell surface. We show that the MHETase whole-cell catalyst has activity comparable to recombinant MHETase purified from Escherichia coli. Finally, we demonstrate that surface displayed MHETase is active across a range of pHs, temperatures, and for at least 12 days at room temperature. CONCLUSIONS: We demonstrate the feasibility of using S. cerevisiae as a platform for the expression and surface display of PET degrading enzymes and predict that the whole-cell catalyst will be a viable alternative to protein purification-based approaches for plastic degradation.
Assuntos
Hidrolases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Hidrolases/metabolismo , Etilenoglicol , Plásticos/metabolismoRESUMO
Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the 'Cambrian biramous limb'. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the 'Cambrian biramous limb', confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.
Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Extremidades/anatomia & histologia , Fósseis , Brânquias/anatomia & histologia , Animais , Artrópodes/classificação , Cabeça/anatomia & histologia , Marrocos , FilogeniaRESUMO
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrinas , Junção Neuromuscular/fisiologia , Transporte Proteico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.
Assuntos
Fósseis , Invertebrados/anatomia & histologia , Invertebrados/classificação , Animais , Brânquias/anatomia & histologia , História Antiga , Invertebrados/fisiologia , Marrocos , FilogeniaRESUMO
We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Neurônios Motores , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Fatores Quimiotáticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
The renowned soft-bodied faunas of the Cambrian period, which include the Burgess Shale, disappear from the fossil record in the late Middle Cambrian, after which the Palaeozoic fauna dominates. The disappearance of faunas of Burgess Shale type curtails the stratigraphic record of a number of iconic Cambrian taxa. One possible explanation for this loss is a major extinction, but more probably it reflects the absence of preservation of similar soft-bodied faunas in later periods. Here we report the discovery of numerous diverse soft-bodied assemblages in the Lower and Upper Fezouata Formations (Lower Ordovician) of Morocco, which include a range of remarkable stem-group morphologies normally considered characteristic of the Cambrian. It is clear that biotas of Burgess Shale type persisted after the Cambrian and are preserved where suitable facies occur. The Fezouata biota provides a link between the Burgess Shale communities and the early stages of the Great Ordovician Biodiversification Event.
Assuntos
Biodiversidade , Fósseis , Biologia Marinha , Animais , Extinção Biológica , MarrocosRESUMO
OBJECTIVE: This study aimed to investigate the reproducibility of the kinematics in rotational high-velocity, low-amplitude (HVLA) thrust of the upper cervical spine. METHODS: Twenty fresh human cervical specimens were studied in a test-retest situation with 2 manual therapists. Kinematics of C1-C2 and C0-C1 were examined during segmental rotational HVLA manipulation through an ultrasound-based tracking system. The thrust moment was analyzed by 3-dimensional aspects: the range of motion of axial rotation, flexion-extension, lateral banding, and the cross-correlation between the axial rotation and the coupled lateral banding components. RESULTS: During rotational HVLA thrust on C1-C2, the main axial rotation demonstrates an intraexaminer relationship varying from almost perfect to fair (intraclass correlation coefficient =0.71; intraclass correlation coefficient = 0.35) and a substantial interexaminer correlation of 0.73. CONCLUSIONS: This study showed substantial levels of reliability for the main axial rotation component of segmental manual rotational HVLA thrust on C1-C2. Intra- and interrater reliability for flexion-extension, lateral bending, and cross-correlation was low.
Assuntos
Vértebras Cervicais/fisiologia , Manipulação da Coluna/métodos , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , RotaçãoRESUMO
Mutations in the human Mid1 gene cause Opitz G/BBB syndrome, which is characterized by various midline closure defects. The Caenorhabditis elegans homolog of Mid1, madd-2, positively regulates signaling by the unc-40 Netrin receptor during the extension of muscle arms to the midline and in axon guidance and branching. During uterine development, a specialized cell called anchor cell (AC) breaches the basal laminae separating the uterus from the epidermis and invades the underlying vulval tissue. AC invasion is guided by an UNC-6 Netrin signal from the ventral nerve cord and an unknown guidance signal from the vulval cells. Using genetic epistasis analysis, we show that madd-2 regulates AC invasion downstream of or in parallel with the Netrin signaling pathway. Measurements of AC shape, polarity and dynamics indicate that MADD-2 prevents the formation of ectopic AC protrusions in the absence of guidance signals. We propose that MADD-2 represses the intrinsic invasive capacity of the AC, while the Netrin and vulval guidance cues locally overcome this inhibitory activity of MADD-2 to guide the AC ventrally into the vulval tissue. Therefore, developmental cell invasion depends on a precise balance between pro- and anti-invasive factors.
Assuntos
Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipertelorismo/genética , Hipospadia/genética , Vulva/embriologia , Animais , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Transporte/fisiologia , Moléculas de Adesão Celular/fisiologia , Esôfago/anormalidades , Esôfago/fisiologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas dos Microtúbulos/fisiologia , Modelos Biológicos , Proteínas Nucleares/fisiologia , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína LigasesRESUMO
The systematic affinities of several Palaeozoic skeletal taxa were only resolved when their soft-tissue morphology was revealed by the discovery of exceptionally preserved specimens. The conodonts provide a classic example, their tooth-like elements having been assigned to various invertebrate and vertebrate groups for more than 125 years until the discovery of their soft tissues revealed them to be crown-group vertebrates. Machaeridians, which are virtually ubiquitous as shell plates in benthic marine shelly assemblages ranging from Early Ordovician (Late Tremadoc) to Carboniferous, have proved no less enigmatic. The Machaeridia comprise three distinct families of worm-like animals, united by the possession of a dorsal skeleton of calcite plates that is rarely found articulated. Since they were first described 150 years ago machaeridians have been allied with barnacles, echinoderms, molluscs or annelids. Here we describe a new machaeridian with preserved soft parts, including parapodia and chaetae, from the Upper Tremadoc of Morocco, demonstrating the annelid affinity of the group. This discovery shows that a lineage of annelids evolved a dorsal skeleton of calcareous plates early in their history; it also resolves the affinities of a group of problematic Palaeozoic invertebrates previously known only from isolated elements and occasional skeletal assemblages.
Assuntos
Anelídeos/classificação , Filogenia , Animais , Anelídeos/anatomia & histologia , Anelídeos/ultraestrutura , Fósseis , História Antiga , MarrocosRESUMO
Amyloids are associated with over 50 human diseases and have inspired significant effort to identify small molecule remedies. Here, we present an in vivo platform that efficiently yields small molecule inhibitors of amyloid formation. We previously identified small molecules that kill the nematode C. elegans by forming membrane-piercing crystals in the pharynx cuticle, which is rich in amyloid-like material. We show here that many of these molecules are known amyloid-binders whose crystal-formation in the pharynx can be blocked by amyloid-binding dyes. We asked whether this phenomenon could be exploited to identify molecules that interfere with the ability of amyloids to seed higher-order structures. We therefore screened 2560 compounds and found 85 crystal suppressors, 47% of which inhibit amyloid formation. This hit rate far exceeds other screening methodologies. Hence, in vivo screens for suppressors of crystal formation in C. elegans can efficiently reveal small molecules with amyloid-inhibiting potential.
Assuntos
Amiloide , Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Animais , Amiloide/metabolismo , Amiloide/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Faringe/metabolismo , Faringe/efeitos dos fármacos , Humanos , Agregados Proteicos/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodosRESUMO
Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.
Assuntos
Antinematódeos , Sistema Enzimático do Citocromo P-450 , Nematoides , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Nematoides/efeitos dos fármacos , Antinematódeos/farmacologia , Sulfetos/farmacologia , Sulfetos/químicaRESUMO
The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(CYP27A1), suggesting that dafadine can be used to interrogate developmental control and longevity in other animals.
Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Isoxazóis/farmacologia , Longevidade/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Isoxazóis/química , Larva/efeitos dos fármacos , Estrutura Molecular , Piperidinas/química , Piridinas/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Fischer-Tropsch (FT) synthesis is an important process to manufacture hydrocarbons and oxygenated hydrocarbons from mixtures of carbon monoxide and hydrogen (syngas). The catalysis process occurs on, for example, cobalt metal surfaces at elevated temperatures and pressures. A fundamental understanding of the reduction pathway of supported cobalt oxides, and the intermediate species present during the activation, can assist in developing improved industrial supported cobalt catalysts. Hard synchrotron X-rays have the unique ability to probe atomic processes both in terms of phases present as well as the crystallographic and local structure (using the pair distribution function approach) under realistic conditions. In this manuscript we present results from measurements during in situ hydrogen activation of a model Co/alumina catalyst using in situ synchrotron X-ray powder diffraction and pair-distribution function (PDF) analysis on beam line ID31 at the ESRF in Grenoble, France. The PDF analysis showed a substantially improved understanding of the reduction of cobalt oxides, as for the first time all cobalt could be accounted for by using total scattering analysis.
RESUMO
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Assuntos
Anti-Helmínticos , Nematoides , Animais , Humanos , Caenorhabditis elegans , Proteínas Vesiculares de Transporte de Acetilcolina , Anti-Helmínticos/farmacologia , Ivermectina/farmacologia , Resistência a Medicamentos , MamíferosRESUMO
Specimens of Euproops sp. (Xiphosura, Chelicerata) from the Carboniferous Piesberg quarry near Osnabrück, Germany, represent a relatively complete growth series of 10 stages. Based on this growth sequence, morphological changes throughout the ontogeny can be identified. The major change affects the shape of the epimera of the opisthosoma. In earlier stages, they appear very spine-like, whereas in later stages the bases of these spine-like structures become broader; the broadened bases are then successively drawn out distally. In the most mature stage known, the epimera are of trapezoidal shape and approach each other closely to form a complete flange around the thoracetron (=fused tergites of the opisthosoma). These ontogenetic changes question the taxonomic status of different species of Euproops, as the latter appear to correspond to different stages of the ontogenetic series reconstructed from the Piesberg specimens. This means that supposed separate species could, in fact, represent different growth stages of a single species. It could alternatively indicate that heterochrony (=evolutionary change of developmental timing) plays an important role in the evolution of Xiphosura. We propose a holomorph approach, i.e., reconstructing ontogenetic sequences for fossil and extant species as a sound basis for a taxonomic, phylogenetic, and evolutionary discussion of Xiphosura.
Assuntos
Evolução Biológica , Fósseis , Caranguejos Ferradura/classificação , Caranguejos Ferradura/genética , Animais , Extinção Biológica , Alemanha , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/crescimento & desenvolvimentoRESUMO
The resistance of Caenorhabditis elegans to pharmacological perturbation limits its use as a screening tool for novel small bioactive molecules. One strategy to improve the hit rate of small-molecule screens is to preselect molecules that have an increased likelihood of reaching their target in the worm. To learn which structures evade the worm's defenses, we performed the first survey of the accumulation and metabolism of over 1,000 commercially available drug-like small molecules in the worm. We discovered that fewer than 10% of these molecules accumulate to concentrations greater than 50% of that present in the worm's environment. Using our dataset, we developed a structure-based accumulation model that identifies compounds with an increased likelihood of bioavailability and bioactivity, and we describe structural features that facilitate small-molecule accumulation in the worm. Preselecting molecules that are more likely to reach a target by first applying our model to the tens of millions of commercially available compounds will undoubtedly increase the success of future small-molecule screens with C. elegans.