Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 35(5): 407-414, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294422

RESUMO

The first Global Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) found widespread, accelerating declines in Earth's biodiversity and associated benefits to people from nature. Addressing these trends will require science-based policy responses to reduce impacts, especially at national to local scales. Effective scaling of science-policy efforts, driven by global and national assessments, is a major challenge for turning assessment into action and will require unprecedented commitment by scientists to engage with communities of policy and practice. Fulfillment of science's social contract with society, and with nature, will require strong institutional support for scientists' participation in activities that transcend conventional research and publication.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Planeta Terra , Políticas
2.
Ecol Appl ; 18(1): 246-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18372570

RESUMO

Catastrophic die-offs can have important consequences for vertebrate population growth and biodiversity, but catastrophic risks are not commonly incorporated into endangered-species recovery planning. Natural (e.g., landslides, floods) and anthropogenic (e.g., toxic leaks and spills) catastrophes pose a challenge for evolutionarily significant units (ESUs) of Pacific salmon listed under the Endangered Species Act and teetering at precariously low population levels. To spread risks among Puget Sound chinook salmon populations, recovery strategies for ESU-wide viability recommend at least two viable populations of historical life-history types in each of five geographic regions. We explored the likelihood of Puget Sound chinook salmon ESU persistence by examining spatial patterns of catastrophic risk and testing ESU viability recommendations for 22 populations of the threatened Puget Sound chinook salmon ESU. We combined geospatial information about catastrophic risks and chinook salmon distribution in Puget Sound watersheds to categorize relative catastrophic risks for each population. We then analyzed similarities in risk scores among regions and compared risk distributions among strategies: (1) population groups selected using the ESU viability recommendations of having populations spread out geographically and including historical life-history diversity, and (2) population groups selected at random. Risks from individual catastrophes varied among populations, but overall risk from catastrophes was similar within geographic regions. Recovery strategies that called for two viable populations in each of five geographic regions had lower risk than random strategies; strategies that included life-history diversity had even lower risks. Geographically distributed populations have varying catastrophic-risks profiles, thus identifying and reinforcing the spatial and life-history diversity critical for populations to respond to environmental change or needed to rescue severely depleted or extirpated populations. Recovery planning can promote viability of Pacific salmon ESUs across the landscape by incorporating catastrophic risk assessments.


Assuntos
Conservação dos Recursos Naturais , Salmão , Animais , Medição de Risco , Washington , Poluentes Químicos da Água/toxicidade
3.
Ecol Appl ; 17(7): 2061-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17974341

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) have declined dramatically across the Pacific Northwest because of multiple human impacts colloquially characterized as the four "H's": habitat degradation, harvest, hydroelectric and other dams, and hatchery production. We use this conceptual framework to quantify the relative importance of major threats to the current status of 201 Chinook populations. Current status is characterized by two demographic indices: population density and trend. We employ path analytic models and information theoretic methods for multi-model inference. Our results indicate that dams most strongly affect variation in population density, while harvest and hatchery production most strongly affect variation in population trend. Comparable results arise when the sample size of the analysis is reduced to 22 Chinook populations within a smaller region typical of the scale at which salmon recovery planning is conducted. Results from these threat analyses suggest that recovery strategies targeting specific demographic indices, and those considering natural and human-mediated interdependencies of major threats, are most likely to succeed.


Assuntos
Conservação dos Recursos Naturais , Salmão , Animais , Ecossistema , Humanos , Idaho , Oregon , Densidade Demográfica , Washington
4.
Proc Natl Acad Sci U S A ; 104(16): 6720-5, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17412830

RESUMO

Throughout the world, efforts are under way to restore watersheds, but restoration planning rarely accounts for future climate change. Using a series of linked models of climate, land cover, hydrology, and salmon population dynamics, we investigated the impacts of climate change on the effectiveness of proposed habitat restoration efforts designed to recover depleted Chinook salmon populations in a Pacific Northwest river basin. Model results indicate a large negative impact of climate change on freshwater salmon habitat. Habitat restoration and protection can help to mitigate these effects and may allow populations to increase in the face of climate change. The habitat deterioration associated with climate change will, however, make salmon recovery targets much more difficult to attain. Because the negative impacts of climate change in this basin are projected to be most pronounced in relatively pristine, high-elevation streams where little restoration is possible, climate change and habitat restoration together are likely to cause a spatial shift in salmon abundance. River basins that span the current snow line appear especially vulnerable to climate change, and salmon recovery plans that enhance lower-elevation habitats are likely to be more successful over the next 50 years than those that target the higher-elevation basins likely to experience the greatest snow-rain transition.


Assuntos
Clima , Conservação dos Recursos Naturais , Ecossistema , Modelos Biológicos , Salmão , Animais , Rios , Abastecimento de Água
5.
Evolution ; 50(2): 856-864, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28568944

RESUMO

The relative importance of random genetic drift and local adaptation in causing population substructuring in plant species remains an important empirical question. Here I estimate the effective size of the genetic neighborhood, Nb , as a means of evaluating the likely role of genetic drift in creating genetic differentiation within a population of a marine plant, Zostera marina L. (eelgrass). Calculations of effective neighborhood size are based on field estimates of pollen and seed-dispersal distributions, an electrophoretic estimate of the mating system using open-pollinated progeny arrays, and determination of the effective density of reproductive individuals in the population. Neighborhood area calculated from the parent-offspring dispersal variances was equal to Na = 524 m2 ; variance in the seed-dispersal distribution contributes more than twice as much as variance in pollen dispersal to Na . Including an outcrossing rate slightly different from random, estimated neighborhood size for Z. marina is Nb = 6255. This estimate is one of the largest reported for plants or animals and indicates that genetic drift in small neighborhoods is highly unlikely to cause genetic substructuring in the study population. High gene-flow levels provided by the marine environment appear to prevent genetic isolation by distance among eelgrass patches, but the importance of drift through founder events in this population characterized by high patch turnover cannot be discounted and is the subject of ongoing study.

6.
Evolution ; 52(2): 330-343, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28568331

RESUMO

In this study, the first investigation of population structure in an aquatic angiosperm, I show that populations of a marine angiosperm (eelgrass, Zostera marina) are genetically differentiated at a number of spatial scales. I find also that there is no correspondence between geographic and genetic distances separating subpopulations, an increasingly common result in spatially stratified studies of genetic structure in marine invertebrates. F-statistics, calculated for two years from electrophoretic variation at five polymorphic allozyme loci, indicate significant genetic differentiation among sampling quadrats within each of two bays (θ = 0.064-0.208), between tide zones within a bay (θ = 0.025-0.157) and between bays (θ = 0.079). Spatial autocorrelation analysis was used to explore genetic differentiation at smaller spatial scales; estimated patch sizes (within which genetic individuals are randomly associated) indicated no appeciable genetic structure at scales less than 20 m × 20 m. Calculated values of F-statistics were a function of the spatial scale from which samples were drawn: increasing the size of the "subpopulation" included in calculation of fixation indices for the same "total" sample resulted in an increase in the magnitude of f (e.g., from 0.092 to 0.181) and a decrease in θ (e.g., from 0.186 to 0.025). On the basis of the best estimate of the spatial scale of subpopulations, the effective number of migrants per generation (Ne m) ranges from 1.1 to 2.8. Genetic consequences of the disturbance regime in the eelgrass habitat sampled were extreme variation between years in the allele richness and proportion of heterozygotes in a sample and a positive relationship between the extinction probability of patches and the genetic variance among them. The changes in F-statistics as a function of sampling scale and the observation that θ among sampled quadrats was positively associated with the probability of extinction among quadrats indicated that indirect estimates of gene flow (Ne m) calculated from θ should be cautiously interpreted in populations that may not yet be in drift-migration equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA