Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 610(7930): 81-86, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998666

RESUMO

The oxidative cleavage of alkenes is an integral process that converts feedstock materials into high-value synthetic intermediates1-3. The most viable method to achieve this in one chemical step is with ozone4-7; however, this poses technical and safety challenges owing to the explosive nature of ozonolysis products8,9. Here we report an alternative approach to achieve oxidative cleavage of alkenes using nitroarenes and purple-light irradiation. We demonstrate that photoexcited nitroarenes are effective ozone surrogates that undergo facile radical [3+2] cycloaddition with alkenes. The resulting 'N-doped' ozonides are safe to handle and lead to the corresponding carbonyl products under mild hydrolytic conditions. These features enable the controlled cleavage of all types of alkenes in the presence of a broad array of commonly used organic functionalities. Furthermore, by harnessing electronic, steric and mediated polar effects, the structural and functional diversity of nitroarenes has provided a modular platform to obtain site selectivity in substrates containing more than one alkene.

2.
J Am Chem Soc ; 145(50): 27810-27820, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059920

RESUMO

Bicyclic amines are important motifs for the preparation of bioactive materials. These species have well-defined exit vectors that enable accurate disposition of substituents toward specific areas of chemical space. Of all possible skeletons, the 2-azabicyclo[3.2.0]heptane framework is virtually absent from MedChem libraries due to a paucity of synthetic methods for its preparation. Here, we report a modular synthetic strategy that utilizes nitroarenes as flat and easy-to-functionalize feedstocks for the assembly of these sp3-rich materials. Mechanistically, this approach exploits two concomitant photochemical processes that sequentially ring-expand the nitroarene into an azepine and then fold it into a rigid bicycle pyrroline by means of singlet nitrene-mediated nitrogen insertion and excited-state-4π electrocyclization. A following hydrogenolysis provides, with full diastereocontrol, the desired bicyclic amine derivatives whereby the aromatic substitution pattern has been translated into the one of the three-dimensional heterocycle. These molecules can be considered rigid pyrrolidine analogues with a well-defined orientation of their substituents. Furthermore, unsupervised clustering of an expansive virtual database of saturated N-heterocycles revealed these derivatives as effective isosteres of rigidified piperidines. Overall, this platform enables the conversion of nitroarene feedstocks into complex sp3-rich heterocycles of potential interest to drug development.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674503

RESUMO

In tumors, the multi drug resistance phenomenon may occur through the efflux of chemotherapeutic drugs out of cancer cells, impeding their accumulation, and eventually reducing their toxicity. This process is mediated by transporters overexpressed in the plasma membranes of tumor cells, among which is the P-glycoprotein/multidrug resistance 1/ATP-binding cassette B1 (P-gp/MDR1/ABCB1). The aim of this study was to explore the effect of a new molecule, called AIF-1, on ABCB1 activity. In a cellular model of non-small cell lung cancer (NSCLC), AIF-1 significantly inhibited ABCB1 activity, which was evaluated by the fluorimetric measurement of the intracellular accumulation of calcein. AIF-1 also significantly increased the intracellular content of doxorubicin, which was evaluated by confocal microscopy and LC-MS/MS analysis. This effect translated to higher cytotoxicity of doxorubicin and reduced cellular proliferation. Finally, in a murine xenograft model, the tumor volume increased by 267% and 148% on average in mice treated with vehicle and doxorubicin alone, respectively. After the co-administration of doxorubicin with AIF-1, tumor volume increased by only 13.4%. In conclusion, these results suggest enhancement of the efficacy of the chemotherapeutic drug doxorubicin by AIF-1, laying the basis for the future development of new ABCB1 inhibitors for tumor treatment.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Espectrometria de Massas em Tandem , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo
4.
Angew Chem Int Ed Engl ; 62(52): e202310540, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37926921

RESUMO

ortho-Aminophenols are aromatic derivatives featuring vicinal N- and O-based functionalities commonly found in the structures of many high-value materials. These molecules are generally prepared using multistep strategies that follow the rules of electrophilic aromatic substitution (SE Ar) chemistry. Despite their high fidelity, such approaches cannot target substrates featuring a "contra-SE Ar" arrangement of N- and O-groups. Here we report an alternative strategy for the preparation of such ortho-aminophenols using aryl azides as the precursors. The process utilizes low-energy photoexcitation to trigger the decomposition of aryl azides into singlet nitrenes that undergo a dearomative-rearomative sequence. This allows the incorporation of alcoholic nucleophiles into a seven-membered ring azepine intermediate via temporary disruption of aromaticity, followed by electrophile-induced re-aromatization. The net retrosynthetic logic is that the alcohol displaces the azide, which, in turn, moves to its ortho position and furthermore is converted into an amide. The synthetic value and complementarity of this strategy has been demonstrated by the coupling of aryl azides with complex, drug-like alcohols and phenols as well as amines, thiols and thiophenols, which provides a general platform for the fast and selective heterofunctionalization of aromatics.

5.
Angew Chem Int Ed Engl ; 60(13): 7132-7139, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458924

RESUMO

The introduction of chlorine atoms into organic molecules is fundamental to the manufacture of industrial chemicals, the elaboration of advanced synthetic intermediates and also the fine-tuning of physicochemical and biological properties of drugs, agrochemicals and polymers. We report here a general and practical photochemical strategy enabling the site-selective chlorination of sp3 C-H bonds. This process exploits the ability of protonated N-chloroamines to serve as aminium radical precursors and also radical chlorinating agents. Upon photochemical initiation, an efficient radical-chain propagation is established allowing the functionalization of a broad range of substrates due to the large number of compatible functionalities. The ability to synergistically maximize both polar and steric effects in the H-atom transfer transition state through appropriate selection of the aminium radical has provided the highest known selectivity in radical sp3 C-H chlorination.

6.
Angew Chem Int Ed Engl ; 59(35): 15021-15028, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432808

RESUMO

Vicinal diamines are ubiquitous materials in organic and medicinal chemistry. The direct coupling of olefins and amines would be an ideal approach to construct these motifs. However, alkene diamination remains a long-standing challenge in organic synthesis, especially when using two different amine components. We report a general strategy for the direct and selective assembly of vicinal 1,2-diamines using readily available olefin and amine building blocks. This mild and straightforward approach involves in situ formation and photoinduced activation of N-chloroamines to give aminium radicals that enable efficient alkene aminochlorination. Owing to the ambiphilic nature of the ß-chloroamines produced, conversion into tetra-alkyl aziridinium ions was possible, thus enabling diamination by regioselective ring-opening with primary or secondary amines. This strategy streamlines the preparation of vicinal diamines from multistep sequences to a single chemical transformation.

7.
Angew Chem Int Ed Engl ; 59(21): 8225-8231, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32003916

RESUMO

Herein we report the development of a photocatalytic strategy for the divergent preparation of functionalized bicyclo[1.1.1]pentylamines. This approach exploits, for the first time, the ability of nitrogen-radicals to undergo strain-release reaction with [1.1.1]propellane. This reactivity is facilitated by the electrophilic nature of these open-shell intermediates and the presence of strong polar effects in the transition-state for C-N bond formation/ring-opening. With the aid of a simple reductive quenching photoredox cycle, we have successfully harnessed this novel radical strain-release amination as part of a multicomponent cascade compatible with several external trapping agents. Overall, this radical strategy enables the rapid construction of novel amino-functionalized building blocks with potential application in medicinal chemistry programs as p-substituted aniline bioisosteres.

8.
Org Biomol Chem ; 17(7): 1839-1842, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30623963

RESUMO

The direct decarboxylative azidation of cyclic α-amino acids has been achieved via visible light-mediated organo-photoredox catalysis. This synthetic strategy allows the simple preparation of azide-contaning building blocks and has been used in the selective modification of N-terminal proline residues of two di-peptides.

9.
Angew Chem Int Ed Engl ; 56(47): 14948-14952, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28967171

RESUMO

Arylamines constitute the core structure of many therapeutic agents, agrochemicals, and organic materials. The development of methods for the efficient and selective construction of these structural motifs from simple building blocks is desirable but still challenging. We demonstrate that protonated electron-poor O-aryl hydroxylamines give aminium radicals in the presence of Ru(bpy)3 Cl2 . These highly electrophilic species undergo polarized radical addition to aromatic compounds in high yield and selectivity. We successfully applied this method to the late-stage modification of chiral catalyst templates, therapeutic agents, and natural products.

10.
Nat Chem ; 16(5): 771-779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273027

RESUMO

The synthesis of functionalized nitrogen heterocycles is integral to discovering, manufacturing and evolving high-value materials. The availability of effective strategies for heterocycle synthesis often biases the frequency of specific ring systems over others in the core structures of bioactive leads. For example, while the six- and five-membered piperidine and pyrrolidine are widespread in medicinal chemistry libraries, the seven-membered azepane is essentially absent and this leaves open a substantial area of three-dimensional chemical space. Here we report a strategy to prepare complex azepanes from simple nitroarenes by photochemical dearomative ring expansion centred on the conversion of the nitro group into a singlet nitrene. This process is mediated by blue light, occurs at room temperature and transforms the six-membered benzenoid framework into a seven-membered ring system. A following hydrogenolysis provides the azepanes in just two steps. We have demonstrated the utility of the strategy with the synthesis of several azepane analogues of piperidine drugs.

11.
Nat Struct Mol Biol ; 30(12): 1958-1969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049566

RESUMO

Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/química , Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Domínios Proteicos , Fatores de Transcrição , Linhagem Celular Tumoral
12.
RSC Adv ; 10(17): 9964-9975, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498617

RESUMO

The exploitation of self-assembled systems to improve the solubility of drugs is getting more and more attention. Among the different types of self-assembled biomaterials, peptides and in particular peptides containing non-coded amino acids (NCAPs) are promising because their use opens the door to more stable materials inducing increased stability to proteolysis. New classes of NCAP, Ac-Ala-X-Ala-Aib-AlaCONH2 (X = alpha-aminoisobutyric acid (Aib) or X = cyclopentane amino acid (Ac5c)) have been prepared and the correlation between the different secondary peptide structure and solvent (i.e. CD3CN, CD3OH, H2O/D2O) verified by NMR. Furthermore, the formation of a nanocolloidal system in water was deeply studied by DLS and the morphology of the obtained spherical aggregates with nanometric dimensions was assessed by TEM. Aib containing pentapeptide was selected for greater ease of synthesis. Its ability to encapsulate curcumin, as a model insoluble drug molecule, was investigated using fluorescence emission and confocal microscopy analyses. Two different approaches were used to study the interaction between curcumin and peptide aggregates. In the first approach peptide aggregates were formed in the presence of curcumin, while in the second approach curcumin was added to the already formed peptide aggregates. We succeeded in our challenge by using the second approach and 53.8% of added curcumin had been encapsulated.

13.
Medchemcomm ; 10(2): 310-314, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931091

RESUMO

A phospine free hydroarylation reaction applied to norbornene derivatives is described for the first time and was exploited for the regioselective gram scale synthesis of AR-148, a known Rac1-Tiam1 PPI inhibitor. Umpolung conversion of the nitro group into free amine allowed the regiocontrol of the key arylation step via a long range effect. The effect of AR-148 in comparison with its enantiomers on Rac1 activation of has been evaluated and (-)AR-148 has been identified as the first enantiomerically pure inhibitor of Rac1-Tiam1 PPI.

14.
Nat Chem ; 11(5): 426-433, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011173

RESUMO

The formation of carbon-nitrogen bonds for the preparation of aromatic amines is among the top five reactions carried out globally for the production of high-value materials, ranging from from bulk chemicals to pharmaceuticals and polymers. As a result of this ubiquity and diversity, methods for their preparation impact the full spectrum of chemical syntheses in academia and industry. In general, these molecules are assembled through the stepwise introduction of a reactivity handle in place of an aromatic C-H bond (that is, a nitro group, halogen or boronic acid) and a subsequent functionalization or cross-coupling. Here we show that aromatic amines can be constructed by direct reaction of arenes and alkyl amines using photocatalysis, without the need for pre-functionalization. The process enables the easy preparation of advanced building blocks, tolerates a broad range of functionalities, and multigram scale can be achieved via a batch-to-flow protocol. The merit of this strategy as a late-stage functionalization platform has been demonstrated by the modification of several drugs, agrochemicals, peptides, chiral catalysts, polymers and organometallic complexes.

16.
J Med Chem ; 57(7): 2953-62, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24520998

RESUMO

The use of the 2-amino-3-(phenylsulfanyl)norbornane-2-carboxylate scaffold has been exploited for the de novo design of potent Rac1 inhibitors acting as modulators of the protein-protein interaction between Rac1 and Tiam1. A series of compounds differing in regio- and stereochemistry has been prepared by way of a multistep synthesis based on cycloaddition reactions and Pd chemistry. Pharmacological analyses showed that all the prepared compounds were active and selective for Rac1, and the most effective compound 13 was capable of inhibiting smooth muscle cell migration. The synthesis of this derivative was successfully scaled up to 1 g.


Assuntos
Movimento Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Desenho de Fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Norbornanos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Células Cultivadas , Difenilamina/química , Difenilamina/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Compostos Heterocíclicos/química , Humanos , Microscopia de Vídeo , Modelos Moleculares , Estrutura Molecular , Norbornanos/química , Estereoisomerismo , Relação Estrutura-Atividade , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA